Advertisement

On the computation of discontinuous multi-dimensional gas flows

  • V. V. Rusanov
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 141)

Keywords

Discontinuity Surface Irregular Mesh Nonlinear Discontinuity Uniform Scheme Shock Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neuman, von,J., Richtmyer R.D. A Method for Numerical Calculation of Hydrodynamic Shocks. J.Appl. Phys. Vol. 21, pp.232–237 (1950).CrossRefGoogle Scholar
  2. 2.
    Kuznetzov, N.N. The Asymptotic of the Solutions of Finite-Difference Problem (Russian), Zhurnal Vychislit. Matem. i Matemat. Phiziki, vol. 12, N 2, pp.334–351 (1972).Google Scholar
  3. 3.
    Boris, J.P. and Brook, D.L. Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm that Works. J.Comp.Phys., vol. 11, N 1, pp.38–69 (1973)CrossRefGoogle Scholar
  4. 4.
    Lax, P.D. Weak Solutions of Non-Linear Hyperbolic Equations of Hydrodynamics. Comm. Pure Appl.Math. Vol. 7, N 1, pp-159–193 (1954).Google Scholar
  5. 5.
    Rusanov, V.V. Non-Linear Analysis of the Shock Profile in Difference Schemes. Proc. Sec. Int.Conf. on Numer.Meth. in Fluid Dynamics. In “Lecture Notes in Physics”, vol. 8, Springer Verlag (1970). 6. Rusanov, V.V. and Bezmenov I.V. On the Limiting Profile of Non-Linear Discontinuity in One-Dimensional difference Schemes. Keldysh Inst. Appl. Math. Preprint N 69 (1980).Google Scholar
  6. 7.
    Rusanov, V.V. On Difference Schemes of Third Order Accuracy for Non-Linear Hyperbolic Systems. J.Comp.Phys. Vol. 5, pp.507–516 (1970).CrossRefGoogle Scholar
  7. 8.
    Izvolskii, V.A. and Rusanov, V.V. The Construction and Investigation of the Third-Order Difference Schemes. (Russian). Keldysh Inst. Appl. Math.Akad. Nauk, Preprint N 3 (1979).Google Scholar
  8. 9.
    Rusanov, V.V. Advanced Techniques for Computation Supersonic Flows. Proc. 15th AIAA Aero. Space Sci. Meeting AIAA Paper, pp.77–173 (1977).Google Scholar
  9. 10.
    Rusanov, V.V. and Nazhestkina, E.I. Boundary Conditions in Difference Schemes for Hyperbolic Equations. Proc. Third GAMM — Conference on Numerical Method in Fluid Mechanics. Köln (1979).Google Scholar
  10. 11.
    Rusanov, V.V., A Test Case for Checking Computational Methods for Gas Flows with Discontinuities. In GAMM-Workshop “Boundary Algorithms for Multidimensional Inviscid Hyperbolic Flows” K.Förster (Ed.), Verl.F. Vieveg & Bohn Branschweig Wiesbaden, pp.100–125 (1978)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • V. V. Rusanov
    • 1
  1. 1.Keldysh Institute of Applied Mathematics MoscowUSSR

Personalised recommendations