The manifold of embeddings of a closed manifold

  • E. Binz
  • H. R. Fischer
4. Geometric Methods and Global Analysis
Part of the Lecture Notes in Physics book series (LNP, volume 139)


Open Neighbourhood Normal Bundle Differential Calculus Inverse Function Theorem Banach Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADM]
    R. Arnowitt-S. Deser-C. Misner, “The dynamics of general relativity” in “Gravitation: An introduction to current research”. L.Witten ed., Wiley, New York (1962).Google Scholar
  2. [B]
    N. Bourbaki, “variétés différentiables et analytiques: Fascicule des résultats”. Herman, Paris (1969).Google Scholar
  3. [D]
    P.A.M. Dirac, “Fixation of coordinates in the hamiltonian theory of gravitation”. Phys.Rev. 114 (1959), 924.Google Scholar
  4. [DW]
    B.S. DeWitt, “Quantum theory of gravitation, I. The canonical theory”. Phys.Rev. 160, (1967), 1113.Google Scholar
  5. [EM]
    D.G. Ebin-J. Marsden, “Groups of diffeomorphisms and the motion of an incompressible fluid”.Google Scholar
  6. [E]
    J. Eells, “On the geometry of function spaces'. Symp.Top.Alg. Mexico City (1958).Google Scholar
  7. [E]
    H.I. Eliasson, “Geometry of manifolds of maps”. J.Diff. Geometry1 (1967).Google Scholar
  8. [F]
    H.-R. Fischer, “On manifolds of mappings”.Google Scholar
  9. [FM]
    A.E. Fischer-J. Marsden, “The Einstein equations of evolution — A geometric approach. J.Math.Phys. 12 (1972).Google Scholar
  10. [GG]
    M. Golubitski-V. Guillemin, ‘Stable mappings and their singularities”. Graduate Text, Springer-Verlag, Berlin, Heidelberg, New York, (1973).Google Scholar
  11. [G]
    J.Gutknecht, “Die C Γ — Struktur auf der Diffeomorphismengruppe einer kompakten Mannigfaltigkeit“. Diss.ETH Zürich, 5879 (1977).Google Scholar
  12. [HKT]
    S.A. Hojman-K. Kuchar-C. Teitelboim, “Geometrodynamics regained”. Ann. Phys. 96 (1976), 88.Google Scholar
  13. [Ko]
    J. Komorowski,“A geometrical formulation of the general free boundary value problems and the theorem of E. Noether connected with them”. Rep.Math.Phys. 1 (1970).Google Scholar
  14. [K]
    K. Kuchar, “Geometry of hyperspace”, I.II.III., J.Math.Phys. 17 (1976), 777.Google Scholar
  15. [L]
    S. Lang, “Introduction of differentiable manifolds”, Addison-Wesley Publishing Company Inc. Reading, Mass. (1972)Google Scholar
  16. [M]
    J. Mather, “Stability of C-mappings II”. Ann.Math. 89 (1969).Google Scholar
  17. [M-W]
    C.W.Misner-J.A. Wheeler, “Classical physics as geometry”. Ann.Phys. 2 (1957), 525.Google Scholar
  18. [O]
    H. Omori, On the group diffeomorphisms on a compact manifold, Proc.Symp. Pure Math. XV, Providence (1970).Google Scholar
  19. [W]
    J.A. Wheeler, “Geometrodynamics”. Academic Press, New York (1962).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • E. Binz
  • H. R. Fischer

There are no affiliations available

Personalised recommendations