Life without T2

  • R. Z. Domiaty
3. Elliptic Operators, Spectral Theory and Physical Applications
Part of the Lecture Notes in Physics book series (LNP, volume 139)


Topological Space Proper Subset General Topology Metrizable Space Differentiable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Brickell-R.S. Clark, Differentiable Manifolds, London 1970.Google Scholar
  2. [2]
    C.J.S. Clarke, Space-time singularities. Commun. Math. Phys., 49 (1976) 17–23.Google Scholar
  3. [3]
    R.Z. Domiaty, A survey on locally metrizable spaces. Proc. Meeting of General Topology, Trieste, Sept. 4–18th, 1978 (in print)Google Scholar
  4. [4]
    R.Z. Domiaty, Locally metrizable spaces II. Math. Colloq. Univ. Cape Town, 12 (1979) (in print)Google Scholar
  5. [5]
    R.Z. Domiaty, The Hausdorff separation property for space-time. Eleftheria (Athens), 2 (1980) (in print).Google Scholar
  6. [6]
    R.Z. Domiaty, Zur inneren Geometrie quasimetrischer Räume. Colloquium in memory of W. Rinow, Greifswald 1980 (in print).Google Scholar
  7. [7]
    D.B. Gauld, Topological properties of manifolds. Am. Math. Month., 81 (1974) 633–636.Google Scholar
  8. [8]
    R. Geroch, Spinor structure of space-time in general relativity, i., J. Math. Phys., 9 (1968) 1739–1744Google Scholar
  9. [9]
    R. Geroch, Space-time structure from a global viewpoint, p. 71–103 in: General Relativity and Cosmology, Ed.: B.K. Sachs, New York 1971.Google Scholar
  10. [10]
    N.J. Hicks, Notes on Differential Geometry. London 1971Google Scholar
  11. [11]
    P. Hajicek, Causality in non-Hausdorff space-times. Commun. Math. Phys., 21 (1971) 75–84Google Scholar
  12. [12]
    P. Hajicek, Bifurcate space-times. J.Math.Phys., 12 (1971) 157–160Google Scholar
  13. [13]
    S.W. Hawking-G.F.R. Ellis, The large Scale Structure of Space-Time. Cambridge 1973.Google Scholar
  14. [14]
    A. Haefliger-G. Reeb, Variétés (non separées) à une dimension et structures feuilletées du plan'. Enseign. Math., 3 (1957) 107–125.Google Scholar
  15. [15]
    J.L. Kelley, General Topology. New York 1955Google Scholar
  16. [16]
    W. Kundt, Global theory of space-time, p. 93–133 in: Proc. Thirteenth Biennial Seminar, Canadian Math. Congr. Ed.: R. Vanstone. Montreal 1972.Google Scholar
  17. [17]
    S. Lang, Differential Manifolds. Reading, Mass. 1972.Google Scholar
  18. [18]
    J. Nagata, Modern General Topology, Amsterdam 1968Google Scholar
  19. [19]
    M. Spivak, Differential Geometry, Vol. I. Boston 1970Google Scholar
  20. [20]
    M. Spivak, Differential Geometry, Vol. II. Boston 1970Google Scholar
  21. [21]
    A. Wilansky, Life without T2. Am. Math. Month., 77Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. Z. Domiaty
    • 1
  1. 1.GrazAustria

Personalised recommendations