Advertisement

Non-associative algebras and exceptional gauge groups

  • L. C. Biedenharn
  • L. P. Horwitz
2. Gauge Theories
Part of the Lecture Notes in Physics book series (LNP, volume 139)

Keywords

Associative Algebra Jordan Algebra Quadratic Algebra Nonassociative Algebra Jordan Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J.R. Faulkner and J.C. Ferrar, Bull. London Math. Soc. 9, 1–35 (1977).Google Scholar
  2. (2)(a).
    P.Jordan, Nachr. Ges. Wiss. Göttingen, 209 (1933).Google Scholar
  3. (2) (b).
    P.Jordan, J.v. Neumann, and E.P. Wigner, Ann. Math. 35, 29 (1934).Google Scholar
  4. (3).
    I.E. Segal, Ann. Math. 48, 930–948 (1947).Google Scholar
  5. (4).
    S. Sherman, Ann. Math. 64. 593–601 (1956).Google Scholar
  6. (5).
    F. Gürsey, in Kyoto International Symposium on Mathematical Physics, ed. by H. Araki, p. 189 (Springer, N.Y., 1975).Google Scholar
  7. (6).
    F. Gürsey, invited paper at the Conference on Non-Associative Algebras, Univ. of Virginia, Charlottesville, Va., March 1977 (unpublished)Google Scholar
  8. (7).
    C.W. Kim, invited paper at the second Johns Hopkins Workshop on “Current Problems in High Energy Particle Theory”, Johns Hopkins University, Baltimore, Md., April 1978, ed. by G. Domokos and S. Kövesi-Domokos, (Baltimore, Md., 1978).Google Scholar
  9. (8).
    F. Gürsey, invited paper, loc. cit. in Ref. 7.Google Scholar
  10. (9).
    E. Størmer, Trans. Am. Math. Soc. 120, 438–447 (1965); Acta Math. 115, 165–184 (1966); Trans. Am. Soc. 130, 153–166 (1968).Google Scholar
  11. (10).
    e. Alfven, E. Schultz and E. Størmer, to appear in Advances in Mathematics.Google Scholar
  12. (11).
    E. Størmer, Acta Physicy Austriaca, Suppl. XVI, 1–14 (1976).Google Scholar
  13. (12).
    Harald Hanche-Olsen, preprint ISBN-82-553-0341-3 (University of Oslo), April;978.Google Scholar
  14. (13).
    G. Domokos and S. Kövesi-Domokos, J. Math. Phys. 19, 1477 (1978).Google Scholar
  15. (14).
    H.H. Goldstine and L.P. Horwitz, Proc. Nat. Acad. Sci. 48, 1134 (1962); Math. Ann. 154, 1 (1964); ibid. 164, 291 (1966).Google Scholar
  16. (15).
    L.P. Horwitz and L.C. Biedenharn, Hel. Phys. Acta 38, 385 (1965).Google Scholar
  17. (16).
    L.P. Horwitz and L.C. Biedenharn to appear in J. Math. Phys. (a preliminary report was given at the Second Johns Hopkins Workshop, see citation in Ref. 7.)Google Scholar
  18. (17).
    M. Günaydin, J. Math. Phys. 17, 1875 (1976).Google Scholar
  19. (18).
    K. MacCrimmon, Bull. Am. Maht. Soc., 84, 612–627 (1977).Google Scholar
  20. (19).
    K. MacCrimmon, Proc.Nat. Acad. Sci., 56, 1072–1079 (1966).Google Scholar
  21. (20).
    C. Piron, “Foundations of Quantum Physics” (Benjamin, New York, 1976).Google Scholar
  22. (21).
    M. Koecher, “On Lie Algebras Defined by Jordan Algebras”, Aarhus Univ. Lect. Notes (Aarhus, Denmark) 1967.Google Scholar
  23. (22).
    O. Loos, “Jordan Pairs”, Lecture Notes in Mathematics, Vol. 460, Springer Verlag (New York, 1975).Google Scholar
  24. (23).
    M. Günaydin, Invited paper at the Second Johns Hopkins Workshop as cited in Ref. 7.Google Scholar
  25. (24).
    M. Günaydin, C. Piron and H. Ruegg, Univ. of Geneva preprint UGVA-DPT 1977/ 12–154 (to be published in Comm. Math. Phys.).Google Scholar
  26. (25).
    L.C. Biedenharn, J. Math. Phys. 4, 436 (1963).Google Scholar
  27. (26).
    L. Michel and L.A. Radicati, Ann. Inst. Henri Poincaré, XVIII, =, 185–214 (1973).Google Scholar
  28. (27).
    M. Gell-Mann, Phys. Rev. 125, 1097 (1962).Google Scholar
  29. (28).
    J. Faulkner, Mem. Amer. Math. Soc., No. 104, (1970).Google Scholar
  30. (29).
    This section incorporates results completed after the conference.Google Scholar
  31. (30).
    H. Freudenthal, Advances in Math., I, 145 (1965).Google Scholar
  32. (31).
    M. Koecher, “An Elementary Approach to Bounded Symmetric Domains”, Rice Univercity Lecture Notes, (Rice University, Houston, Texas, 1969).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • L. C. Biedenharn
    • 1
  • L. P. Horwitz
    • 2
  1. 1.Institut für Theoretische Physik der Johann Wolfgang Goethe UniversitätFrankfurt/MainGermany (BRD)
  2. 2.Tel Aviv UniversityRamat AvivIsrael

Personalised recommendations