Advertisement

General vector field representations of local Heisenberg systems

  • F. B. Pasemann
1. Quantization Methods and Special Quantum Systems
Part of the Lecture Notes in Physics book series (LNP, volume 139)

Abstract

A quantization procedure is proposed starting with the Lie algebra \(\mathbb{G}\) of infinitesimal symmetries of a system and a \(\mathbb{G}\)-action on a principle bundle
. For quasi-complete \(\mathbb{G}\)-actions the constructed vector field operators are essentially skew adjoint and can be interpreted as canonical momentum observables of a local Heisenberg system. Integrability of general vector field representations of local Heisenberg systems to unitary representations of corresponding Heisenberg systems is discussed.

Keywords

Vector Field Unitary Representation Volume Form Principal Bundle Base Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.W. Mackey, Bull. Amer. Math. Soc. 69, 628 (1963)Google Scholar
  2. 2.
    H.D. Doebner, H.-E. Werth, J. Math. Phys., 20, 1011 (1979)Google Scholar
  3. 3.
    F.B. Pasemann, General vector field representations — a geometric tool for quantization, IAEA, IC 78/48 (1978)Google Scholar
  4. 4.
    H. Snellman, Ann. Inst. Henri Poincaré A 24, 393 (1976)Google Scholar
  5. 5.
    I.E. Segal, Duke Math. J. 18, 221 (1951)Google Scholar
  6. 6.
    J. Dixmier, Algèbres d'operateur. In Proc. Int. Summer School Phys. Varenna 1968, Ed. R. Jost, Academic Press, New York 1970Google Scholar
  7. 7.
    R.S. Palais, Mem. of the Amer. Math. Soc. 22, (1957)Google Scholar
  8. 8.
    R. Abraham, J.E. Marsden, Foundation of Mechanics Benjamin, Reading 1978Google Scholar
  9. 9.
    C.J. Isham, Proc. R. Soc. Lond. A 362, 383, (1978)Google Scholar
  10. 10.
    B. Kostant, Quantization and unitary representations, Lecture Notes in Mathematics Vol. 170, Springer, New York 1970Google Scholar
  11. 11.
    J.-E. Werth, Ann. Inst. Henri Poincaré A 25, 165 (1976)Google Scholar
  12. 12.
    W. Drechsler, M.E. Meyer, Fiber Bundle Techniques in Gauge Theories, Lecture Notes in Physics Vol. 67, Springer, New York 1977Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • F. B. Pasemann
    • 1
  1. 1.Institut für Theoretische PhysikClausthalGermany

Personalised recommendations