Skip to main content

On a geometric quantization scheme generalizing those of Kostant-Souriau and Czyz

  • 1. Quantization Methods and Special Quantum Systems
  • Conference paper
  • First Online:
Differential Geometric Methods in Mathematical Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 139))

Abstract

A quantization method (strictly generalizing the Kostant-Souriau theory) is defined, which may be applied in some cases where both Kostant-Souriau prequantum bundles and metaplectic structures do not exist. It coincides with the Czyz theory for compact Kähler manifolds with locally constant scalar curvature. Quantization of dynamical variables is defined without use of intertwining operators, extending either the Kostant map or some ordering rule like that of Weyl or Born-Jordan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S. Agarwal, E. Wolf Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics I Phys. Rev. D 2 (1970) 2161–2186

    Google Scholar 

  2. M.F. Atiyah, R. Bott, A. Shapiro Clifford modules, Topology 3, Suppl. 1 (1964) 3–38

    Google Scholar 

  3. R. Blattner Quantization and representation theory in: Harmonic analysis and homogeneous spaces, ed. C.C. Moore, AMS Proc. Symp. Pure Math. 26 (1973)

    Google Scholar 

  4. R. Bott in: Bott, Gitler, JamesLectures on algebraic and differential topology, Springer Lect. Notes in Math. 279 (1972)

    Google Scholar 

  5. K.E. Cahill, R.J. Glauber Ordered expansions in boson amplitude operators, Phys. Rev. 177 (1969) 1857–1881

    Google Scholar 

  6. L. Cohen Generalized phase space distribution functions Journ. Math. Phys. 7 (1966) 781–786

    Google Scholar 

  7. J. Czyz On some approach to geometric quantization in: Diff. geom. meth. in math. phys. II, Proc. Bonn 1977 Springer Lect. Notes in Math. 676 (1978)

    Google Scholar 

  8. J. Czyz On geometric quantization and its connections with the Maslov theory, Univ. of Warsaw reprint (1977), to app. in Rep.Math.Phys.

    Google Scholar 

  9. M. Forger, H. Hess Universal metaplectic structures and geometric quantization, FU Berlin reprint (1978), to app. in Comm. Math. Phys.

    Google Scholar 

  10. J. Fraenkel Cohomologie non abélienne et espaces fibrés Bull. Soc. Math. France 85 (1957) 135–220

    Google Scholar 

  11. K. Gawedzki Fourier-like kernels in geometric quantization (thesis) Diss. Math. 128 (1976) 1–83

    Google Scholar 

  12. W. Greub, H.-R. PetryOn the lifting of structure groups in: Diff. geom. meth. in math. phys. II, Proc. Bonn 1977 Springer Lect. Notes in Math. 676 (1978)

    Google Scholar 

  13. H. Hess forthcoming thesis (FU Berlin)

    Google Scholar 

  14. H. Hess, D. Krausser Lifting classes of principal bundles I FU/TU Berlin reprint (1977), to app. in Rep. Math. Phys.

    Google Scholar 

  15. F.W. Kamber, P. Tondeur Foliated bundles and characteristic classes Springer Lect. Notes in Math. 493 (1975)

    Google Scholar 

  16. S. Kobayashi, T. Nagano On a fundamental theorem of Weyl-Cartan on G-structures, Journ. Math. Soc. Japan 17 (1965) 84–101

    Google Scholar 

  17. S. Kobayashi, K. Nomizu Foundations of differential geometry II Interscience (1969)

    Google Scholar 

  18. B. Kostant On the definition of quantization in: Colloq. Int. du CNRS, Géom. sympl. et phys. math., Aix-en-Provence 1974, ed. CNRS (1976)

    Google Scholar 

  19. B. Kostant Symplectic spinors in: Conv. di geom. simpl. e fisica mat., INDAM Rome 1973, Symp. Math. 14, Academic Press (1974)

    Google Scholar 

  20. B. Kostant Quantization and unitary representations in: Lect. in mod. analysis and appl. III, ed. C.T. Taam, Springer Lect. Notes in Math. 170 (1970)

    Google Scholar 

  21. J.H. Rawnsley On the cohomology groups of a polarization and diagonal quantization, Trans. Am. Math. Soc. 230 (1977) 235–255

    Google Scholar 

  22. J.H. Rawnsley On the pairing of polarizations Comm. Math. Phys. 58 (1978) 1–8

    Google Scholar 

  23. P. Renouard Variétés symplectiques et quantification (thesis) Paris, Orsay (1969)

    Google Scholar 

  24. I.E. Segal Transforms for operators and symplectic automorphisms over a locally compact abelian group, Mad. Scand. 13 (1963) 31–43

    Google Scholar 

  25. D. Shale Linear symmetries of free boson fields Trans. Am. Math. Soc. 103 (1962) 149–167

    Google Scholar 

  26. H.J. Simms Geometric quantization of energy levels in the Kepler problem, in: Conv. di geom. simpl.. e fisica mat., INDAM Rome 1973, Symp. Math. 14, Academic Press (1974)

    Google Scholar 

  27. D.J. Simms Metalinear structures and a geometric quantization of the harmonic oscillator, in: Colloq-Int. du CNRS, Géom. sympl. et phys. math., Aix-en-Provence 1974, ed. CNRS (1976)

    Google Scholar 

  28. J.-M, Souriau Structure des systèmes dynamiques Dunod, Paris (1970)

    Google Scholar 

  29. J. Tolar Quantization and deformation theory In: Group theoretical methods in physics, Proc. Tübingen 1977, Springer Lect. Notes in Phys. 79 (1978)

    Google Scholar 

  30. I. Vaisman Cohomology and differential forms Dekker (1973)

    Google Scholar 

  31. R.O. Well (jr) Differential anal sis on complex manifolds Prentice-Hall (1973)

    Google Scholar 

  32. A. Weil Sur certains groupes d'opérateurs unitaires Acta Math. 111 (1964) 143–211

    Google Scholar 

  33. A. Weil Variétés kähleriennes Herrmann, Paris (1958)

    Google Scholar 

  34. K. Yano Differential geometri on complex and almost complex spaces Pergamon Press (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Heinz-Dietrich Doebner

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Hess, H. (1981). On a geometric quantization scheme generalizing those of Kostant-Souriau and Czyz. In: Doebner, HD. (eds) Differential Geometric Methods in Mathematical Physics. Lecture Notes in Physics, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10578-6_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-10578-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10578-7

  • Online ISBN: 978-3-540-38573-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics