Advertisement

On a geometric quantization scheme generalizing those of Kostant-Souriau and Czyz

  • Harald Hess
1. Quantization Methods and Special Quantum Systems
Part of the Lecture Notes in Physics book series (LNP, volume 139)

Abstract

A quantization method (strictly generalizing the Kostant-Souriau theory) is defined, which may be applied in some cases where both Kostant-Souriau prequantum bundles and metaplectic structures do not exist. It coincides with the Czyz theory for compact Kähler manifolds with locally constant scalar curvature. Quantization of dynamical variables is defined without use of intertwining operators, extending either the Kostant map or some ordering rule like that of Weyl or Born-Jordan.

Keywords

Line Bundle Cohomology Class Chern Class Geometric Quantization Holomorphic Sectional Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.S. Agarwal, E. Wolf Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics I Phys. Rev. D 2 (1970) 2161–2186Google Scholar
  2. 2.
    M.F. Atiyah, R. Bott, A. Shapiro Clifford modules, Topology 3, Suppl. 1 (1964) 3–38Google Scholar
  3. 3.
    R. Blattner Quantization and representation theory in: Harmonic analysis and homogeneous spaces, ed. C.C. Moore, AMS Proc. Symp. Pure Math. 26 (1973)Google Scholar
  4. 4.
    R. Bott in: Bott, Gitler, JamesLectures on algebraic and differential topology, Springer Lect. Notes in Math. 279 (1972)Google Scholar
  5. 5.
    K.E. Cahill, R.J. Glauber Ordered expansions in boson amplitude operators, Phys. Rev. 177 (1969) 1857–1881Google Scholar
  6. 6.
    L. Cohen Generalized phase space distribution functions Journ. Math. Phys. 7 (1966) 781–786Google Scholar
  7. 7.
    J. Czyz On some approach to geometric quantization in: Diff. geom. meth. in math. phys. II, Proc. Bonn 1977 Springer Lect. Notes in Math. 676 (1978)Google Scholar
  8. 8.
    J. Czyz On geometric quantization and its connections with the Maslov theory, Univ. of Warsaw reprint (1977), to app. in Rep.Math.Phys.Google Scholar
  9. 9.
    M. Forger, H. Hess Universal metaplectic structures and geometric quantization, FU Berlin reprint (1978), to app. in Comm. Math. Phys.Google Scholar
  10. 10.
    J. Fraenkel Cohomologie non abélienne et espaces fibrés Bull. Soc. Math. France 85 (1957) 135–220Google Scholar
  11. 11.
    K. Gawedzki Fourier-like kernels in geometric quantization (thesis) Diss. Math. 128 (1976) 1–83Google Scholar
  12. 12.
    W. Greub, H.-R. PetryOn the lifting of structure groups in: Diff. geom. meth. in math. phys. II, Proc. Bonn 1977 Springer Lect. Notes in Math. 676 (1978)Google Scholar
  13. 13.
    H. Hess forthcoming thesis (FU Berlin)Google Scholar
  14. 14.
    H. Hess, D. Krausser Lifting classes of principal bundles I FU/TU Berlin reprint (1977), to app. in Rep. Math. Phys.Google Scholar
  15. 15.
    F.W. Kamber, P. Tondeur Foliated bundles and characteristic classes Springer Lect. Notes in Math. 493 (1975)Google Scholar
  16. 16.
    S. Kobayashi, T. Nagano On a fundamental theorem of Weyl-Cartan on G-structures, Journ. Math. Soc. Japan 17 (1965) 84–101Google Scholar
  17. 17.
    S. Kobayashi, K. Nomizu Foundations of differential geometry II Interscience (1969)Google Scholar
  18. 18.
    B. Kostant On the definition of quantization in: Colloq. Int. du CNRS, Géom. sympl. et phys. math., Aix-en-Provence 1974, ed. CNRS (1976)Google Scholar
  19. 19.
    B. Kostant Symplectic spinors in: Conv. di geom. simpl. e fisica mat., INDAM Rome 1973, Symp. Math. 14, Academic Press (1974)Google Scholar
  20. 20.
    B. Kostant Quantization and unitary representations in: Lect. in mod. analysis and appl. III, ed. C.T. Taam, Springer Lect. Notes in Math. 170 (1970)Google Scholar
  21. 21.
    J.H. Rawnsley On the cohomology groups of a polarization and diagonal quantization, Trans. Am. Math. Soc. 230 (1977) 235–255Google Scholar
  22. 22.
    J.H. Rawnsley On the pairing of polarizations Comm. Math. Phys. 58 (1978) 1–8Google Scholar
  23. 23.
    P. Renouard Variétés symplectiques et quantification (thesis) Paris, Orsay (1969)Google Scholar
  24. 24.
    I.E. Segal Transforms for operators and symplectic automorphisms over a locally compact abelian group, Mad. Scand. 13 (1963) 31–43Google Scholar
  25. 25.
    D. Shale Linear symmetries of free boson fields Trans. Am. Math. Soc. 103 (1962) 149–167Google Scholar
  26. 26.
    H.J. Simms Geometric quantization of energy levels in the Kepler problem, in: Conv. di geom. simpl.. e fisica mat., INDAM Rome 1973, Symp. Math. 14, Academic Press (1974)Google Scholar
  27. 27.
    D.J. Simms Metalinear structures and a geometric quantization of the harmonic oscillator, in: Colloq-Int. du CNRS, Géom. sympl. et phys. math., Aix-en-Provence 1974, ed. CNRS (1976)Google Scholar
  28. 28.
    J.-M, Souriau Structure des systèmes dynamiques Dunod, Paris (1970)Google Scholar
  29. 29.
    J. Tolar Quantization and deformation theory In: Group theoretical methods in physics, Proc. Tübingen 1977, Springer Lect. Notes in Phys. 79 (1978)Google Scholar
  30. 30.
    I. Vaisman Cohomology and differential forms Dekker (1973)Google Scholar
  31. 31.
    R.O. Well (jr) Differential anal sis on complex manifolds Prentice-Hall (1973)Google Scholar
  32. 32.
    A. Weil Sur certains groupes d'opérateurs unitaires Acta Math. 111 (1964) 143–211Google Scholar
  33. 33.
    A. Weil Variétés kähleriennes Herrmann, Paris (1958)Google Scholar
  34. 34.
    K. Yano Differential geometri on complex and almost complex spaces Pergamon Press (1965)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Harald Hess
    • 1
  1. 1.Freie Universität BerlinBerlin 33

Personalised recommendations