Quasi-deuteron effects at intermediate energies

  • Berthold Schoch
III. Baryons and Mesons in Nuclei
Part of the Lecture Notes in Physics book series (LNP, volume 137)


It has been shown that photon and pion reactions in certain energy regions are dominated by the absorption on correlated (n-p)-pairs. Therefore, calculations based on quasi-deuteron models describe rather well the present experimental results. However, with more accurate data out of the reactions (γ,np),(γ,N), (π,NN) and (π,N) performed so that the complete kinematics is known, the correlation function of nucleon pairs in nuclei can be studied a quantity very important for our understanding of the nuclear many body system. The dominance for absorption on pairs in reactions with a rather big mismatch in energy and momentum in the entrance channel compared with the exit channel of the reaction asks to take a close look at other reactions wether these effects show up too: in his contribution Laget has shown that with the inclusion of a quasi-deuteron contribution he can explain the enhanced cross section in (e,e')-reactions between the quasifree peak and the Δ-resonance region. Also pick up reactions, above a critical momentum transfer, are dominated by pair correlation effects.

To learn more about single particle wavefunctions, correlation functions and the validity of the impulse approximation, mostly used in the analyses of the data, a combined effort experimentally as well as theoretically has to be undertaken. Thereby, the use of different projectiles as probes in nuclear reactions will help to disentangle and to check the various ingredients entering in a calculation.


Differential Cross Section Giant Dipole Resonance Impulse Approximation Nucleon Pair Single Particle Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    J.Ahrens, Nucl.Phys. A 335 (1980) 67Google Scholar
  2. 2).
    J.S.Levinger, Phys.Rev. 84 (1951) 43Google Scholar
  3. 3).
    K.Gottfried, Nucl.Phys. 5 (1958) 557Google Scholar
  4. 4).
    K.G.Hilger, Staatsexamensarbeit, Bonn 1980Google Scholar
  5. 5).
    B.Bassalleck, W.D.Klotz, F.Takeutchi, H.Ullrich and M.Furic, Phys.Rev. C 16 (1977) 1526Google Scholar
  6. 6).
    J.Favier, T.Bressani, G.Charpak, L.Massonet, W.E.Meyerhof and C.Zupancic, Nucl.Phys. A 169 (1971) 540Google Scholar
  7. 7).
    M.E.Nordberg,Jr., K.F.Kinsey and R.L.Burman, Phys.Rev. 165 (1968) 1096Google Scholar
  8. 8).
    K.Gottfried, Ann. of Phys. 21 (1963) 29Google Scholar
  9. 9).
    T.W.Phillips and R.G.Johnson, Phys.Rev. C 20 (1979) 1689Google Scholar
  10. 10).
    H.Göringer and B.Schoch, Phys.Lett. 97 B (1980) 41Google Scholar
  11. 11).
    D.J.S.Findlay and R.O.Owens, Nucl.Phys. A 279 (1977) 385Google Scholar
  12. 12).
    J.L.Matthews, W.Bertozzi, M.J.Leitch, C.A.Peridier, B.L.Roberts, C.P.Sargent, W.Turchinetz, D.J.S.Findlay and R.O.Owens, Phys.Rev. Lett. 38 (1977) 8Google Scholar
  13. 13).
    D.J.S.Findlay and R.O.Owens, Phys.Rev.Lett. 37 (1976) 674Google Scholar
  14. 14).
    D.Bachelier, J.L.Boyard, T.Hennino, J.C.Jourdin, P.Radvanyi and M.RoyStephan, Phys.Rev. C 15 (1977) 2139Google Scholar
  15. 15).
    B.Schoch, Phys.Rev.Lett. 41 (1978) 80Google Scholar
  16. 16).
    H.Hebach, A.Wortberg and M.Gari, Nucl.Phys. A 267 (1976) 425Google Scholar
  17. 17).
    J.P.Didelez, H.Langevin-Joliot, Z.Maric and V.Radojevic, Nucl.Phys. A 143 (1970) 602Google Scholar
  18. 18).
    F.Prats, George Washington University, Preprint 1978Google Scholar
  19. 19).
    H.J.Weber, Lecture Notes in Physics 108 (1979) 457 (Springer-Verlag, Berlin, Heidelberg, New York)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Berthold Schoch
    • 1
  1. 1.Institut für KernphysikUniversität MainzMainzW-Germany

Personalised recommendations