Two-dimensional Kalman filtering

  • J. W. Woods
Part of the Topics in Applied Physics book series (TAP, volume 42)


Markov Chain Kalman Filter Face Image Global State Recursive Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    A.Habibi: Proc. IEEE 60, 878–883 (1972)Google Scholar
  2. 5.2
    N.E.Nahi: Proc. IEEE 60, 872–877 (1972)Google Scholar
  3. 5.3
    S.R.Powell, L.M.Silverman: IEEE Trans. AC-19, 8–13 (1974)Google Scholar
  4. 5.4
    J.W.Woods, C.H.Radewan: IEEE Trans. IT-23, 473–482 (1977); IT-25, 628–629 (1979)Google Scholar
  5. 5.5
    M.G.Strintzis: IEEE Trans. AC-23, 801–809 (1978)Google Scholar
  6. 5.6
    A.K.Jain, J.R.Jain: IEEE Trans. AC-23, 817–834 (1978)CrossRefGoogle Scholar
  7. 5.7
    M.S.Murphy, L.M.Silverman: “Image Model Representation and Line-by-Line Recursive Restoration”, 1976 Conf. Decision and Control, Clearwater, Florida, Dec. (1976); IEEE Trans. AC-23, 809–816 (1978)Google Scholar
  8. 5.8
    J.W.Woods: IEEE Trans. IT-18, 232–240 (1972)Google Scholar
  9. 5.9
    M.P.Ekstrom, J.W.Woods: IEEE Trans. ASSP-24, 115–128 (1976)Google Scholar
  10. 5.10
    M.P.Ekstrom, R.E.Twogood, J.W.Woods: IEEE Trans. ASSP-28, 16–26 (1980)Google Scholar
  11. 5.11
    A.P.Sage, J.L.Melsa: Estimation Theory with Applications to Communications and Control (McGraw-Hill, New York 1971) pp. 89–90Google Scholar
  12. 5.12
    N.E.Nahi, C.A.Franco: IEEE Trans. C-21, 305–311 (1973)CrossRefGoogle Scholar
  13. 5.13
    J.W.Woods, V.K.Ingle: IEEE Trans. ASSP, to appearGoogle Scholar
  14. 5.14
    R.A.Wiggins: “On Factoring the Correlations of Discrete Multivariable Stochastic Processes”; Ph.D. Thesis Department of Geol. and Geophys., M.I.T., Cambridge, MA. (1965)Google Scholar
  15. 5.15
    W.E.Larimore: Proc. IEEE 65, 961–970 (1977)Google Scholar
  16. 5.16
    D.B.Harris, R.M.Mersereau: IEEE Trans. ASSP-25, 492–500 (1977)Google Scholar
  17. 5.17
    A.Radpour, V.Ingle, H. Kaufman, J. Woods: “Adaptive Kalman Type Estimation Applied to Image Processing”, 1978 Midwest Symp. Circuits and Syst., Ames. Iowa, August (1978)Google Scholar
  18. 5.18
    R.S.Lipster, A.N.Shiryayev: Statistics of Random Processes I. General Theory, Applications of Mathematics, Vol. 5 (Springer, Berlin, Heidelberg, New York 1977) p. 17Google Scholar
  19. 5.19
    V.K.Ingle, J.W.Woods: “Multiple Model Recursive Estimation of Images”, Proc. IEEE, IASSP'79, Washington, D. C., April (1979) pp. 642–645Google Scholar
  20. 5.20
    A.S.Willsky: Automatica 12, 601–611 (1976)CrossRefGoogle Scholar
  21. 5.21
    D.G.Lainiotis: Proc. IEEE 64, (No. 8) 1126–1198 (1976)Google Scholar
  22. 5.22
    D.S.Lebedev, L.I.Mirkin: “Smoothing of Two-Dimensional Images Using the ‘Composite’ Model of a Fragment”, Iconics Inst. Problems in Inform. Trans. Academy of Science, USSR (1975) pp. 57–62. Reprinted in Two-Dimensional Digital Signal Processing, Ed. S. K. Mitra, M. P. Ekstrom. (Dowden, Hutchinson of Ross, Stroudsburg, Pennsylvania, 1978) p. 197–202Google Scholar
  23. 5.23
    P.A.Ramamoorthy, L.T.Bruton: “Design of Stable Two-Dimensional Digital Recursive Filters and Applications in Image Processing”, Proc. 20th Midwest Sympos. Circuits and Systems, Aug. (1977). See also Chap. 3, this volumeGoogle Scholar
  24. 5.24
    H.Kaufman, A.Radpour: “Adaptive Estimation of Nonstationary Image Processes”, Proc. of 1979 John's Hopkins Conf. on Inform. Science and Computers, March (1979)Google Scholar
  25. 5.25
    J.W.Woods: IEEE Trans. COM-23, 845–846 (1975)CrossRefGoogle Scholar
  26. 5.26
    J.B.Anderson, J.B.Bodie: IEEE Trans. IT-21, 379–387 (1975)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. W. Woods

There are no affiliations available

Personalised recommendations