Design of two-dimensional recursive filters

  • P. A. Ramamoorthy
  • L. T. Bruton
Part of the Topics in Applied Physics book series (TAP, volume 42)


Group Delay Filter Design Spectral Factorization Infinite Impulse Response Filter Recursive Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    M.P.Ekstrom, J.W.Woods: IEEE Trans. ASSP-24, 115 (1976)Google Scholar
  2. 3.2
    D.Goodman: IEEE Trans. CAS-24, 209 (1977)Google Scholar
  3. 3.3
    W.F.Osgood: Topics in the Theory of Functions of Several Complex Variables (Dover, New York 1966)Google Scholar
  4. 3.4
    D.Goodman: Proc. IEEE 66, 796 (1978)Google Scholar
  5. 3.5
    H.G.Ansell: IEEE Trans. CT-11, 214 (1964)Google Scholar
  6. 3.6
    T.S.Huang: IEEE Trans. AU-20, 158 (1972))Google Scholar
  7. 3.7
    J.L.Shanks, S.Treitel, J.H.Justice: IEEE Trans. AU-20, 115 (1972))Google Scholar
  8. 3.8
    H.Ozakik T.Kasami: IRE Trans. CT-7, 251 (1960)Google Scholar
  9. 3.9
    T.Koga: IEEE Trans. CT-13, 31 (1966)Google Scholar
  10. 3.10
    G.A.Maria, M.M.Fahmy: IEEE Trans. ASSP-22, 15 (1974)Google Scholar
  11. 3.11
    N.A.Pendergrass: IEEE Trans. ASSP-23, 389 (1975)Google Scholar
  12. 3.12
    M.A.Sid-Ahmed, G.A.Julien: “Frequency Domain Design of a Class of Stable TwoDimensional Recursive Filters”, preprint, University of Windsor, Windsor, Ontario, Canada (June, 1974)Google Scholar
  13. 3.13
    D.C.Youla: Proc. PIB Symp. Generalized Networks, 289 (1966)Google Scholar
  14. 3.14
    P. A. Ramamoorthy: “Design Techniques for Stable Single-and Multi-Dimensional Digital Filters”, Ph.D. Thesis, Dept. of Elect. Eng., University of Calgary (April 1977)Google Scholar
  15. 3.15
    P.A.Ramamoorthy, L.T.Bruton: Intl. J. Circuit Theory and Applications, 7. 229 (1979)Google Scholar
  16. 3.16
    T.N.Rao: Bell Syst. Tech. J. 48, 163 (1969)Google Scholar
  17. 3.17
    R.Fletcher: “Fortran Subroutine for Minimization by Quasi-Newton Methods”, Rpt. R 7125 AERE, Harwell, England (1971)Google Scholar
  18. 3.18
    S.A.H.Aly, M.M.Fahmy: IEEE Trans. CAS-25, 908 (1978)Google Scholar
  19. 3.19
    P. A. Ramamoorthy, L. T. Bruton: “Design of Stable 2D Nonsymmetric Half-Plane Recursive Filters”, Proc. 23rd Midwest Symp. on Circuits and Systems (1980)Google Scholar
  20. 3.20
    R.Fletcher, M.J.D.Powell: Computer J. 6, 163 (1963)Google Scholar
  21. 3.21
    M.P.Ekstrom, R.E.Twogood, J.W.Woods: “Two-Dimensional Recursive Filter Design: A Special Factorization Approach”, preprint, Lawrence Livermore Laboratory, UCRL, CA (Jan. 1979), also in IEEE Trans. ASSP-28, 16 (1980)Google Scholar
  22. 3.22
    P. A. Ramamoorthy, L. T. Bruton: Proc. 1979 IEEE Intern. Conf ASSP (April, 1979) p. 40Google Scholar
  23. 3.23
    P.C.Harloff, J.D.Buys: Computer J. 13, 178 (1970)CrossRefGoogle Scholar
  24. 3.24
    J.Murray: 20th Midwest Symp. on Circuits and Systems (1977) p. 434Google Scholar
  25. 3.25
    R.R.Read, J.L.Shanks, S.Treitel: “Two-Dimensional Recursive Filtering”, in Picture Processing and Digital Filterings, 2nd ed., ed. by T.S.Huang, Topics in Applied Physics, Vol. 6 (Springer, Berlin, Heidelberg, New York 1979) pp. 131–176Google Scholar
  26. 3.26
    N.K.Bose, R.W.Newcomb: Intl. J. Electron. 36, 417 (1974) *** DIRECT SUPPORT *** A3718002 00002Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. A. Ramamoorthy
  • L. T. Bruton

There are no affiliations available

Personalised recommendations