A birds eye view to path problems

  • Bernd Mahr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 100)


The paper surveys the main results which concern path problems and their complexity. The shortest path problem and its general solution techniques are discussed. Generalized path problems are treated and upper and lower complexity bounds presented. Extensive bibliographic notes are given. The paper is intended to expose the state of a theory which is like a paradigm a means for the study of design and analysis of algorithms.


Short Path Adjacency Matrix Transitive Closure Short Path Problem Label Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. /AHU 74/.
    A.V.Aho, J.E. Hopcroft, J.D.Ullman: Design and Analysis of Computer Algorithms, Addison-Wesley 1974Google Scholar
  2. /BC 75/.
    R.C. Backhouse, B.A. Carré: Regular Algebra Applied to Path-finding Problems, J. Inst.Maths.Applics 15, 1975Google Scholar
  3. /Bl 80/.
    P. Bloniarz: A Shortest Path Algorithm with Expected Time O (n2logn log*n), Proc. of the 12th ACM Symp. on Theory of Computing, Los Angeles, 1980Google Scholar
  4. /Br 74/.
    P. Brucker: Theory of Matrix Algorithms, Math. Systems in Economics 13, Anton Hain, 1974Google Scholar
  5. /Ca 71/.
    B.A. Carré: An Algebra for Network Routing Problems, J. Inst. Maths. Applics 7, 1971Google Scholar
  6. /Ca 79/.
    —: Graphs and Networks, Clarendon Press, Oxford, 1979Google Scholar
  7. /Ch 75/.
    N. Christofides: Graph Theory, An Algorithmic Approach, Academic Press, 1975Google Scholar
  8. /Co 71/.
    J.H. Conway: Regular Algebra and Finite Machines, Chapman and Hall, 1971Google Scholar
  9. /Do 72/.
    W. Domschke: Kürzeste Wege in Graphen: Algorithmen, Verfahrensvergleiche, Mathematical Systems in Economics 2, Anton Hain, 1972Google Scholar
  10. /DP 80/.
    N. Deo, C. Pang: Shortest Path Algorithms: Taxonomy and Annotation, Washington State University, CS-80-057, 1980Google Scholar
  11. /Dr 69/.
    S.E. Dreyfus: An Appraisal of Some Shortest Path Algorithms, Operations Research, 17, 1969Google Scholar
  12. /Ei 74/.
    S. Eilenberg: Automata, Languages and Machines, Vol. A, Academic Press, 1974Google Scholar
  13. /FM 71/.
    M.J. Fischer, A.R. Meyer: Boolean Matrix Multiplication and Transitive Closure, IEEE 12th Ann. Symp. on Switching and Automata Theory, 1971Google Scholar
  14. /Fo 56/.
    L.R. Ford: Network Flow Theory, The Rand Corporation, P-923, 1956Google Scholar
  15. /Fr 76/.
    M.L. Fredman: New Bounds on the Complexity of the Shortest Path Problem, SIAM J.Comp., Vol.5, 1976Google Scholar
  16. /Fu 70/.
    M.E. Furman: Application of a Method of Fast Multiplication of Matrices in the Problem of Finding the Transitive Closure of a Graph, Soviet Math. Dokl. 11:5, 1970Google Scholar
  17. /GM 77/.
    B.L. Golden, T.L. Magnanti: Deterministic Network Optimization — a bibliography, Networks, 7, 1977Google Scholar
  18. /GM 79/.
    M. Gondran, M. Minoux: Graphes et Algorithmes, Eyrolles, Paris, 1979Google Scholar
  19. /IN 72/.
    M. Iri, M. Nakamori: Path Sets, Operator Semigroups and Shortest Path Algorithms on a Network, RAAG, Research Notes, Third Series, No. 185, Univ. Tokyo, 1972Google Scholar
  20. /Jo 73/.
    D.B. Johnson: Algorithms for Shortest Paths, TR 73-169, Cornell University, 1973Google Scholar
  21. /Jo 77/.
    —: Efficient Algorithms for Shortest Paths in Networks, J. ACM 24, 1977Google Scholar
  22. /Ke 70/.
    L.R. Kerr: The Effect of Algebraic Structures on the Computational Complexity of Matrix Multiplication, Ph.D. Thesis, Cornell, 1970Google Scholar
  23. /La 76/.
    E. Lawler: Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976Google Scholar
  24. /Le 77/.
    D.J. Lehmann: algebraic Structures for Transitive Closure, Theoretical Computer Science 4, 1977Google Scholar
  25. /LM 80/.
    C. Lautemann, B. Mahr: A Note on the Complexity of Path Problems, unpublished, 1980Google Scholar
  26. /Ma 79/.
    B. Mahr: Algebraische Komplexität des allgemeinen Wegeproblems in Graphen, Techn. Univ. Berlin, Fachbereich Informatik, 79–14, 1979Google Scholar
  27. /Ma 80/.
    —: Semirings and Transitive Closure, in preparation, 1980Google Scholar
  28. /Me 77/.
    K. Mehlhorn: Effiziente Algorithmen, Teubner, 1977Google Scholar
  29. /Mu 68/.
    J.D. Murchland: Shortest Distances by a Fixed Matrix Method, Report LBS-TNT-64, London, Graduate School of Business Studies, 1968 (see /Br 74/)Google Scholar
  30. /Mu 71/.
    J. Munro: Efficient Determination of the Transitive Closure of a Directed Graph, Information Processing Letters 1:2, 1971Google Scholar
  31. /No 76/.
    H. Noltemeier: Graphentheorie; mit Algorithmen und Anwendungen, de Gruyter, 1976Google Scholar
  32. /Pa 74/.
    M.S. Paterson: Complexity of Matrix Algorithms, handwritten copy, May 1974Google Scholar
  33. /Pa 77/.
    U. Pape: Eine Bibliographie zu "kürzeste Wege in Graphen", Techn. Univ. Berlin, FB 20, 1977Google Scholar
  34. /Pi 75/.
    A.R. Pierce: Bibliography on Algorithms for Shortest Path, Shortest Spanning Tree and Related Circuit Routing Problems, 1956–1974), Networks 5, 1975Google Scholar
  35. /Pr 75/.
    V.R. Pratt: The Power of Negative Thinking in Multiplying Boolean Matrices, SIAM J.Comp. Vol. 4, 1975Google Scholar
  36. /Sa 69/.
    A. Salomaa: Theory of Automata, Pergamon Press, Oxford, 1969Google Scholar
  37. /Ta 75/.
    R.E. Tarjan: Solving Path Problems on Directed Graphs, Comp. Sci. Dept. Univ. Stanford, 1975Google Scholar
  38. /Wa 76/.
    R.A. Wagner: A Shortest Path Algorithm for Edge Sparse Graphs, J. ACM, 23, 1976Google Scholar
  39. /Wo 79/.
    A. Wongseelashote: Semirings and Path Spaces, Discrete Math. 26, 1979Google Scholar
  40. /Zi 80/.
    U. Zimmermann: Extract of a book submitted for publication, 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Bernd Mahr
    • 1
  1. 1.Fachbereich Informatik (20) Institut für Software und Theoretische InformatikTechnische Universität BerlinBerlin 10

Personalised recommendations