The analysis of search trees: A survey

  • Th. Ottmann
  • H. -W. Six
  • D. Wood
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 100)


The combinatorial analysis of the behaviour of various classes of data structures is increasingly becoming amenable to investigation as new techniques are developed. In this paper we survey the results available for search trees with an emphasis on post-Yao results.


Binary Tree Search Tree Balance Tree Binary Search Tree Dynamic Data Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AlM]
    Altenkamp,D., and Mehlhorn,K.: Codes: unequal probabilities, unequal letter costs. Universitaet des Saarlandes Computer Science Technical Report A77/13 (1977)Google Scholar
  2. [AM]
    Allen, B., and Munro, J.I.: Self-organizing binary search trees. J. ACM 25 (1978), 526–535Google Scholar
  3. [B]
    Baer, J.L.: Weight-balanced trees. Proc. AFIPS National Computer Conference 44 (1975), 467–472Google Scholar
  4. [Ba]
    Bayer,P.J.: Improved bounds on the costs of optimal and balanced binary search trees. MIT Project MAC Technical Memo. 69 (1975)Google Scholar
  5. [Bi]
    Bitner, J.R.: Heuristics that dynamically organize data structures. SIAM J. Comput. 8 (1979), 82–110Google Scholar
  6. [BiH]
    Bitner,J.R., and Huang,S.H.: Key comparison optimal 2–3 trees with maximum utilization. University of Texas Computer Science Technical Report No.94 (1979)Google Scholar
  7. [BlM]
    Blum,N., and Mehlhorn,K.: On the average number of rebalancing operations in weight-balanced trees. Universitaet des Saarlandes, Computer Science Technical Report A-78/06 (1978)Google Scholar
  8. [BR]
    Bagchi, A., and Roy, J.K.: On V-optimal trees. SIAM J. Comput.8, (1979), 524–541Google Scholar
  9. [Br1]
    Brown, M.R.: Implementation and analysis of binomial queue algorithms. SIAM J. Comput. 7 (1978), 298–319Google Scholar
  10. [Br2]
    Brown, M.R.: A partial analysis of random height-balanced trees. SIAM J. Comput. 8 (1979), 33–41Google Scholar
  11. [Br3]
    Brown, M.R.: Some observations on random 2–3 trees. Information Processing Letters 9 (1979), 57–59Google Scholar
  12. [BrT]
    Brown,M.R., and Tarjan,R.E.: Design and analysis of a data structure for representing sorted lists. Stanford University, Computer Science Technical Report (1978)Google Scholar
  13. [BruC]
    Bruno,J., and Coffman,E.G.: Nearly optimal binary search trees. IFIP 1971, North-Holland (1972), 99–103Google Scholar
  14. [ChW]
    Choy, D.M., and Wong, C.K.: Optimal trees with capacity constraint, Acta Informatica 10, (1978), 273–296Google Scholar
  15. [Co]
    Cot,N.: Characterization and design of optimal prefix codes. Doctoral Dissertation, Stanford University (1977)Google Scholar
  16. [COW]
    Culik II,K., Ottmann,Th., and Wood,D.: Dense multiway trees. University of Karlsruhe, Technical Report No. 77, Inst. f. Ang. Inf. u. Form. Beschr.verf. (1978)Google Scholar
  17. [D]
    van Doren,J.R.: An asymptotic analysis of minimum order B-trees. Unpublished manuscript, (1976)Google Scholar
  18. [Fa]
    Fairley,R.: Unpublished manuscript, (1973)Google Scholar
  19. [FFV]
    Flajolet,P., Francon,J., and Vuillemin,J.: Sequence of operations analysis for dynamic data structures. Journal of Algorithms 1 (1980). to appearGoogle Scholar
  20. [FO]
    Flajolet,P., and Odlyzko,A.: The average height of binary trees and other simple trees. Unpublished manuscript (1980)Google Scholar
  21. [FOW]
    Flajolet,P., Ottmann,Th., and Wood,D.: Search trees, free search trees and bubble memories. In preparation (1980)Google Scholar
  22. [Fr]
    Fredman,M.L.: Two applications of a probabilistic search technique: sorting X+Y and building balanced search trees. Proc. 17th Ann. ACM Symposium on Theory of Computing (1975), 240–244Google Scholar
  23. [FSt]
    Flajolet,P., and Steyaert,J.M.: On the analysis of tree-matching algorithms. Seventh ICALP 80, (J.W. de Bakker and J. van Leeuwen, ed.), Lecture Notes in Computer Science, Vol.85 (1980), 208–219Google Scholar
  24. [Ga]
    Garey, M.R.: Optimal binary search trees with restricted maximal depth. SIAM J. Comput. 2 (1974), 101–110Google Scholar
  25. [GMSW]
    Guettler,R., Mehlhorn,K., Schneider,W., and Wernet,N.: Binary search trees: average and worst case behavior. Universitaet des Saarlandes, Computer Science Technical Report A-76/2 (1976)Google Scholar
  26. [Go]
    Gotlieb,L.: Optimal muliway search trees. Doctoral Dissertation, University of Toronto (1978)Google Scholar
  27. [GoKVW]
    Gotlieb,L., Kriegel,H.P., Vaishnavi,V.K., and Wood,D.: Optimal multiway search trees. Proc. of the 1979 Johns Hopkins Conference on Information Sciences and Systems (1979), 255–256Google Scholar
  28. [GoW]
    Gotlieb,C.C., and Walker,W.A.: A top-down algorithm for constructing nearly optimal lexicographical trees. Graph Theory and Computing (ed. Read,R.C.), Academic Press (1972)Google Scholar
  29. [GoWo]
    Gotlieb,L., and Wood,D.: The construction of optimal multiway search trees and the monotonicity principle. Int. J. of Comp. Math. (1980), to appearGoogle Scholar
  30. [GuO]
    Guibas, L.J., and Odlyzko, A.M.: Maximal prefix-synchronized codes. SIAM J. Appl. Math. 35 (1978), 401–418Google Scholar
  31. [GW]
    Garsia, A.M., and Wachs, M.L.: A new algorithm for minimum cost binary trees. SIAM J. Comput. 6,4 (1977), 622–642Google Scholar
  32. [H]
    Halton,J.H.: Statistics of trees. University of Wisconsin-Madison, Computer Science Technical Report 334 (1978)Google Scholar
  33. [Ho]
    Horibe, Y.: An improved bound for weight-balanced tree. Information and Control 34 (1977), 148–151Google Scholar
  34. [HoN]
    Horibe, Y., and Nemetz, T.O.H.: On the max-entropy rule for a binary search tree. Acta Informatica 12 (1979), 63–72Google Scholar
  35. [Ht]
    Hotz, G.: Schranken fuer balanced trees bei ausgewogenen Verteilungen. Theoretical Computer Science 3 (1977),51–59Google Scholar
  36. [Hual]
    Huang,S.H.S.: Key comparison optimal 2–3-trees with maximum utilization. Master's dissertation, The University of Texas at Austin (1979)Google Scholar
  37. [Hua2]
    Huang,S.H.S.: Space and comparison optimal 1–2 brother trees. The University of Texas at Austin, Computer Science Technical Report 386 (1977)Google Scholar
  38. [HuKT]
    Hu, T.C., Kleitman, D.J., and Tamaki, J.K.: Binary trees optimum under various criteria. SIAM J. Appl. Math. 37 (1979), 246–256Google Scholar
  39. [HuT]
    Hu, T.C., and Tucker, A.C.: Optimal computer search trees and variable length alphabetic codes. SIAM J. Appl. Math. 21 (1971),514–532Google Scholar
  40. [I]
    Itai, A.: Optimum alphabetic trees. SIAM J. Comput. 5 (1976), 9–18Google Scholar
  41. [K]
    Knott,G.D.: Deletion in binary storage trees. Stanford University Computer Science Technical Report CS-75-491 (1975)Google Scholar
  42. [KaFSK]
    Karlton, P.L., Fuller, S.H., Scroggs, R.E., and Kaehler, E.B.: Performance of height-balanced trees. Commun. ACM 19 (1976), 23–28Google Scholar
  43. [Kn1]
    Knuth, D.E.: Optimum binary search trees. Acta Informatica 1 (1971), 14–25Google Scholar
  44. [Kn2]
    Knuth, D.E.: The art of computer programming — Volume 3: Sorting and Searching. Reading, Mass., Addison-Wesley (1973)Google Scholar
  45. [KoO]
    Koesler,P., and Ottmann,Th.: An experimental study of insertion schemes for classes of multiway search trees. Int. J. Comp. Math. (1980), to appearGoogle Scholar
  46. [Le]
    van Leeuwen,J.: On the construction of Huffman trees. Third ICALP (eds. Michaelson and Milner), Edinburgh University Press (1976), 382–410Google Scholar
  47. [LW]
    Larson,J.A., and Walden,W.E.: Comparing insertion schemes used to update 2–3-trees. Unpublished manuscriptGoogle Scholar
  48. [M1]
    Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5 (1975), 287–295Google Scholar
  49. [M2]
    Mehlhorn, K.: A best possible bound for the weighted path length of binary search trees. SIAM J. Comput. 6 (1977) 235–239Google Scholar
  50. [M3]
    Mehlhorn, K.: Dynamic binary search. SIAM J. Comput. 8 (1979), 175–198Google Scholar
  51. [M4]
    Mehlhorn, K.: An efficient algorithm for constructing nearly optimal prefix codes. Universitaet des Saarlandes Computer Science Technical Report A-78/13 (1978)Google Scholar
  52. [M5]
    Mehlhorn,K.: Searching, sorting and information theory. Math. Found. of Comp. Sci., Proc., (ed. J.Becvar), (1979), 131–145Google Scholar
  53. [M6]
    Mehlhorn,K.: A partial analysis of height balanced trees. Universitaet des Saarlandes, Computer Science Technical Report A-79/13 (1979)Google Scholar
  54. [M7]
    Mehlhorn,K.: A new data structure for representing sorted lists. Universitaet des Saarlandes, Computer Science Technical Report A-79/22 (1979)Google Scholar
  55. [M8]
    Mehlhorn,K.: Dynamic data structures. Mathematical Centre Tracts 108 Foundations of Computer Science III, (J.W. de Bakker and J. van Leeuwen, ed.) Amsterdam (1979), 71–96Google Scholar
  56. [Ma]
    Maruyama, K.: Index structures for virtual memory-comparison between B-trees and M-trees. IBM Research Report RC5258 (1975)Google Scholar
  57. [MiPRS]
    Miller, R.E., Pippenger, N., Rosenberg, A.L., and Snyder, L.: Optimal 2–3-trees. SIAM J. Comput. 8 (1979), 42–59Google Scholar
  58. [Mz]
    Mizoguchi,T.: On required space for random split files. Proc. 17th Ann. Allerton Conference (1979)Google Scholar
  59. [NiPWY]
    Nievergelt, J., Prodels, J., Wong, C.K., and Yue, P.C.: Bounds on the weighted path length of binary trees. Inf. Process. Lett. 1 (1972), 220–225Google Scholar
  60. [NiR]
    Nievergelt, J., and Reingold, E.M.: Binary search trees of bounded balance. SIAM J. Comput. 2 (1973), 33–43Google Scholar
  61. [NiW1]
    Nievergelt,J., and Wong,C.K.: On binary search trees, Information Processing 71, North-Holland Publishing Co., (1972), 91–98Google Scholar
  62. [NiW2]
    Nievergelt, J., and Wong, C.K.: Upper bounds for the total path length of binary trees. J. ACM 20 (1973), 1–6Google Scholar
  63. [NM]
    Nakamura,T., and Mizoguchi,T.: An analysis of storage utilization factor in block split data structuring scheme. Proc. 4th VLDB Conference (1978)Google Scholar
  64. [Od]
    Odlyzko,A.: Period oscillations of coefficients of power series that satisfy functional equations. Unpublished manuscript (1979)Google Scholar
  65. [Oℓ1]
    Olivie,H.: On random son-trees. Int. J. Comp. Math. (1980) to appearGoogle Scholar
  66. [Oℓ2]
    Olivie,H.: A new class of balanced search trees: half-balanced binary search trees. Unpublished manuscript (1980)Google Scholar
  67. [Oℓ3]
    Olivie,H.: Doctoral dissertation. University of Antwerp, in preparation (1980).Google Scholar
  68. [ORSW]
    Ottmann, Th., Rosenberg,A.L., Six,H.W., and Wood,D.: Minimal cost brother trees. SIAM J. Comput. (1980), to appearGoogle Scholar
  69. [OSt]
    Ottmann,Th., and Stucky,W.: Higher order analysis of 1–2 brother trees. BIT (1980), to appearGoogle Scholar
  70. [OW1]
    Ottmann,Th., and Wood,D.: 1–2 brother trees or AVL trees revisited. Comput. J. (1980), to appearGoogle Scholar
  71. [OW2]
    Ottmann,Th., and Wood,D.: A comparison of iterative and defined classes of search trees. In preparation (1980)Google Scholar
  72. [Pa]
    Patzak,E.: Dichte 3-weg Baeume. Diplomarbeit, Universitaet Karlsruhe (1978)Google Scholar
  73. [PeGE]
    Perl, Y., Garey, M.R., and Even, S.: Efficient generation of optimal prefix codes: equiprobable words using unequal cost letters. J. ACM 22 (1975), 202–214Google Scholar
  74. [QK]
    Quitzow, K.H., and Klopprogge, M.R.: Space utilization and access path length in B-trees. Inform. Systems 5 (1980), 7–16Google Scholar
  75. [R]
    Rissanen, J.: Bounds for weighted balanced trees. IBM J. Res. Dev. 17 (1973), 101–106Google Scholar
  76. [Ro]
    Robson, J.M.: The height of binary search trees. Australian Computer Journal 11 (1979), 151–153Google Scholar
  77. [RoS1]
    Rosenberg, A.L., and Snyder, L.: Minimal-comparison 2–3-trees. SIAM J. Comput. 7 (1978), 465–480Google Scholar
  78. [RoS2]
    Rosenberg,A.L., and Snyder,L.: Compact B-trees. IBM Research Report RC7343 (1978)Google Scholar
  79. [Ru]
    Ruskey,F.: On the average shape of binary trees. SIAM J. Comput. (1980), to appearGoogle Scholar
  80. [S]
    Six,H.W.: Search cost optimal brother trees. In preparation (1980)Google Scholar
  81. [SV]
    Schlumberger, M., and Vuillemin, J.: Optimal disc merge patterns, Acta Informatica 3, (1973), 25–35Google Scholar
  82. [U]
    Unterauer, K.: Dynamic weighted binary search trees. Acta Informatica 11 (1979), 341–362Google Scholar
  83. [VKW]
    Vaishnavi,V.K., Kriegel,H.P., and Wood,D.: Optimum multiway search trees. Acta Informatica (1980), to appearGoogle Scholar
  84. [WaW]
    Walker, A., and Wood, D.: Locally balanced binary trees. Comput. J., 19(4), (1976), 322–325Google Scholar
  85. [We]
    Wessner, R.L.: Optimum alphabetic search trees with restricted maximal height. Inf. Process. Lett. 4 (1976), 90–94Google Scholar
  86. [Y]
    Yao, A.C.C.: On random 2–3-trees. Acta Informatica 9 (1978), 159–170Google Scholar
  87. [ZB]
    Zaki,A., and Baer,J.L.: A comparison of query costs in AVL and 2–3-trees. University of Washington Computer Science Technical Report 78-02-01 (1978)Google Scholar
  88. [Zi]
    Ziviani,N.: Performance evaluation of symmetric binary B-trees. Unpublished manuscript (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Th. Ottmann
    • 1
  • H. -W. Six
    • 1
  • D. Wood
    • 2
  1. 1.Institut fuer Angewandte Informatik und Formale BeschreibungsverfahrenUniversitaet KarlsruheKarlsruheWest Germany
  2. 2.Unit for Computer ScienceMcMaster UniversityHamiltonCanada

Personalised recommendations