Advertisement

Graph grammars and the complexity gap in the isomorphism problem for acyclic digraphs

  • M. Schnitzler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 100)

Abstract

We regard several classes of acyclic digraphs forming a hierarchy, which represents the present complexity gap in the isomorphism problem for acyclic digraphs. The classes at the lowest level of the hierarchy have a polynomially solvable isomorphism problem, whereas the more general ones have an isomorphism complete one. For all classes we develop graph grammars and examine them for properties reflecting the complexity of the corresponding isomorphism problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.V. AHO — M.R. GAREY — J.D. ULLMAN, The Transitive Reduction of a Directed Graph, SIAM J. Comput. 1 (1972), 131–137.Google Scholar
  2. [2]
    K.S. BOOTH — C.J. COLBOURN, Problems Polynomially Equivalent to Graph Isomorphism, Techn. Rep. CS-77-o4, Comput. Science Dept., Univ. of Waterloo, 1979.Google Scholar
  3. [3]
    D.G. CORNEIL, Recent Results on the Graph Isomorphism Problem, Proc. 8th Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, 1978, pp. 13–31.Google Scholar
  4. [4]
    F. HARARY — R.Z. NORMAN — D. CARTWRIGHT, "Structural Models: An Introduction to the Theory of Directed Graphs", John Wiley & Sons, New York/London/Sidney, 1965.Google Scholar
  5. [5]
    E.L. LAWLER, Graphical Algorithms and their Complexity, Mathematical Centre Tracts 81 (1976), 3–32, Amsterdam.Google Scholar
  6. [6]
    M. NAGL, Formale Sprachen von markierten Graphen, Arbeitsber. d. Inst. f. Math. Masch. u. Datenver. 7 4, Erlangen, 1974.Google Scholar
  7. [7]
    M. NAGL, "Graph-Grammatiken: Theorie, Anwendungen, Implementierung", Vieweg, Braunschweig, 1979.Google Scholar
  8. [8]
    H. NOLTEMEIER, "Graphentheorie mit Algorithmen und Anwendungen", W. de Gruyter, Berlin, 1976.Google Scholar
  9. [9]
    M.SCHNITZLER, Graph Grammars for Acyclic Digraphs, Discussion Paper 8005, Lehrstuhl für Informatik III, RWTH Aachen, 1980.Google Scholar
  10. [10]
    F. SSCHWEIGGERT, On the Relative Complexitiy in Deciding Graph Isomorphism, in "Discrete Structures and Algorithms" (U. Pape, ed.), Proceed. 5th Conf. on Graphtheoretic Concepts in Computer Science, Berlin (West), 1979, pp. 65–76, C. Hanser Verlag, München/Wien, 1980.Google Scholar
  11. [11]
    J. VALDES — R.E. TARJAN — E.L. LAWLER, The Recognition of Series Parallel Digraphs, Proc. 11th Ann. ACM Symp. on Theory of Computing, Atlanta, 1979, pp. 1–12.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • M. Schnitzler
    • 1
  1. 1.Lehrstuhl für Informatik III, RWTH AachenAachen

Personalised recommendations