The post-office problem and related questions

  • H. Maurer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 100)


The only way known to obtain good worst-case algorithms for the post-office problem is to reduce it to region location. For the case of regions bounded by straightline segments a simple algorithm was given recently which is optimal (up to constants). For the case of regions bounded by more or less arbitrary curves no optimal algorithm is known to date. We present a simple (non-optimal) algorithm and demonstrate that space-optimal solutions are possible.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bentley, J.L.: Decomposable searching problems; Information Processing Letters 8(1979), 244–251.Google Scholar
  2. [2]
    Bentley, J.L., Maurer, H.A.: A note on Euclidean near neighbor searching in the plane; Information Processing Letters 8(1979), 133–136.Google Scholar
  3. [3]
    Bentley, J.L., Saxe, J.B.: Decomposable searching problemsI: Static to-Dynamic translations; to appear in: Journal of Algorithms.Google Scholar
  4. [4]
    Dobkin, D.P., Lipton, R.J.: Multidimensional searching problems; SIAM Journal on Computing 5(1976), 181–186.Google Scholar
  5. [5]
    Edelsbrunner, H., van Leeuwen, J.: Multidimensional algorithms and data structures — a bibliography; Bulletin of the EATCS 11 (1980), 46–74.Google Scholar
  6. [6]
    Edelsbrunner, H., Maurer, H.A.: On region location in the plane; Report 52, Institut für Informationsverarbeitung Graz (1980).Google Scholar
  7. [7]
    Kirkpatrick, D.G.: Optimal searching in planar subdivisions; University of British Columbia, Department of Computer Science Report (1979).Google Scholar
  8. [8]
    Lee, D.T., Preparata, F.P.: Location of a point in a planar subdivision and its applications; SIAM Journal on computing 6 (1977), 594–606.Google Scholar
  9. [9]
    Leeuwen, J.v., Maurer, H.A.: Dynamic systems of static data-structures; Report 42, Institut für Informationsverarbeitung Graz (1980).Google Scholar
  10. [10]
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem; Proc. of the 18th Annual FOCS Symposium (1977), 162–170.Google Scholar
  11. [11]
    Maurer, H.A.: Datenstrukturen und Programmierverfahren; Teubner, Stuttgart (1974).Google Scholar
  12. [12]
    Maurer, H.A., Ottmann, Th.: Tree-structures for set manipulation problems; Lecture Notes on Computer Science 53 (1977), 108–121.Google Scholar
  13. [13]
    Maurer, H.A., Ottmann, Th.: Manipulating sets of points — a survey; Applied Computer Science 13, Carl Hanser (1979), 9–29.Google Scholar
  14. [14]
    Maurer, H.A., Ottmann, Th.: Dynamic solutions of decomposable searching problems; Discrete Structures and Algorithms, Carl Hanser (1980), 17–24.Google Scholar
  15. [15]
    Mehlhorn, K.: Effiziente Algorithmen; Teubner, Stuttgart (1977).Google Scholar
  16. [16]
    Mehlhorn, K.: Private Communication (1980).Google Scholar
  17. [17]
    Preparata, F.P.: A new approach to planar point location; University of Illionois at Urbana — Champain, Report R — 829 (1978).Google Scholar
  18. [18]
    Shamos, M.I.: Geometric complexity, Proc. of the 7th Annual Symposium on Theory of Computing (1975), 224–233.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. Maurer
    • 1
  1. 1.Institut für Informationsverarbeitung, TU GrazGraz

Personalised recommendations