Advertisement

Initiation, evolution and global consequences of coherent structures in turbulent shear flows

  • H. E. Fiedler
  • B. Dziomba
  • P. Mensing
  • T. Rösgen
Session III - Experiments
Part of the Lecture Notes in Physics book series (LNP, volume 136)

Keywords

Shear Layer Coherent Structure Spread Rate Turbulent Shear Flow Free Shear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, G.L.; Roshko, A.: “The effect of density differences on the turbulent mixing layer.” “Turbulent shear flows”, AGARD-CP-93 (1971) 23 (1–12).Google Scholar
  2. 2.
    Roshko, A.: “Structure of turbulent shear flows: A new look.” AIAA J. 14 10 (1976) 1349.CrossRefADSGoogle Scholar
  3. 3.
    Liepmann, H.W.: “The rise and fall of ideas in turbulence.” American Scientist, 67, March/April (1979).Google Scholar
  4. 4.
    Laufer, J.: “New trends in experimental turbulence research.” Annual Rev. Fluid Mech., 7 (1975) 307–326.CrossRefADSGoogle Scholar
  5. 5.
    Townsend, A.A.: “The structure of turbulent shear flow.” Cambridge: Cambridge Univ. Press 1959.MATHGoogle Scholar
  6. 6.
    Fuchs, H.V.; Mercker, E. and Michel, U.: “Large-scale coherent structures in the wake of axisymmetric bodies.” JFM, 93 1 (1979) 185–207.ADSCrossRefGoogle Scholar
  7. 7.
    Mensing, P.; Fiedler,H.: “Eine Methode zur Sichtbarmachung von hochturbulenten Luftströmungen mit großen Reynoldszahlen.” To appear in ZFW.Google Scholar
  8. 8.
    Yule, A.J.: “Phase scrambling effects and turbulence data analysis”. Proc. 2nd Symp. on turbulent shear flows, July 2–4. 1979, London.Google Scholar
  9. 9.
    Rbsgen, Th.: “Digitale Signalerkennung in quasikohärenten turbulenten Strukturen." Diplomarbeit, HFI, TU Berlin 1978.Google Scholar
  10. 10.
    Fiedler, H.: “On data acquisition in heated turbulent flows.” Proceedings Dynamic Flows Conference, Marseille 1978.Google Scholar
  11. 11.
    Wygnanski, I.: “Turbulent spots in boundary layers.” Intern. Conf. on the role of coherent structures in modelling turbulence and mixing, Madrid 1980.Google Scholar
  12. 12.
    Eckelmann, H.; Wallace, J.M.: “A comparison of the characteristic features of coherent turbulent structures found using the variable interval time average (VITA) technique and using the pattern recognition technique”. Intern. Conf. on the role of coherent structures in modelling turbulence and mixing, Madrid 1980.Google Scholar
  13. 13.
    Coles. D.: “Useful strategies in turbulence experiments and modelling”. Intern. Conf. on the role of coherent structures in modelling turbulence and mixing, Madrid 1980.Google Scholar
  14. 14.
    Wille, R.: “Beiträge zur Phänomenologie der Freistrahlen.” ZfW, 11 (1963) 222–233.Google Scholar
  15. 15.
    Hussain, A.K.M. F.: “Perturbed and unperturbed turbulent jets.” Intern. Conf. on the role of coherent structures in modelling turbulence and mixing, Madrid 1980.Google Scholar
  16. 16.
    Korschelt, D.: “Experimentelle Untersuchung zum Wärme-und Stofftransport im turbulenten ebenen Freistrahl mit periodischer Anregung am Düsenaustritt.” Dissertation, HFI, TU Berlin 1980.Google Scholar
  17. 17.
    Murthy, S.N.B.: “Turbulent mixing in non-reactive and reactive flows” A Review, Project SQUID, Purdue University 1974.Google Scholar
  18. 18.
    Fiedler, H.; Korschelt, D.; Mensing, P.: “On transport mechanisms and structure of a scalar field in a heated plane shear layer.” Lecture Notes in Physics 76 Berlin: Springer 1977.Google Scholar
  19. 19.
    Wygnanski, I.; Oster, D.; Fiedler, H.: “A forced, plane, turbulent mixing-layer; A challenge for the predictor.” Proc. 2nd Symp. on Turbulent Shear Flows, July 2–4, 1979 London.Google Scholar
  20. 20.
    Munch, F.: “Strukturuntersuchungen in einer turbulenten Scherschicht.” Diplomarbeit HFI, TU Berlin 1978.Google Scholar
  21. 21.
    Mening, P.; et al: “Einfluß kontrollierter Störungen auf eine ebene turbulente Scherschicht.” DGLR Symp. “Strömungen mit Ablbsung”, München 1979.Google Scholar
  22. 22.
    Wygnanski, I.; Oster, D.; Fiedler, H.; Dziomba, B.: “On the perseverance of a quasi two-dimensional eddy-structure in a turbulent mixing layer.” JFM, 93 2 (1979) 325–335.ADSCrossRefGoogle Scholar
  23. 23.
    Oster, D.; Wygnanski, I.; Fiedler, H.: “Some preliminary observations on the effect of initial conditions on the structure of the two-dimensional turbulent mixing layer.” Proc. of SQID Conf., 1976.Google Scholar
  24. 24.
    Hussain, A.K.M.F.; Clark, A.R.: “On the coherent structure of the axisymmetric mixing layer.” Report FM 6, University of Houston 1979.Google Scholar
  25. 25.
    Oster, D.: “The effect of an active disturbance on the development of the two-dimensional turbulent mixing layer.” Ph.D.-Thesis, Tel Aviv University 1980.Google Scholar
  26. 26.
    Fiedler, H.; Rdsgen, Th.: “On the anatomy of a rolled-up vortex in an excited plane turbulent shear layer.” 32nd Meeting of the APS, Nov. 18–20 1979.Google Scholar
  27. 27.
    Ho, Chi-Ming: private communicationGoogle Scholar
  28. 28.
    Acton, E.: “The modelling of large eddies in a two-dimensional shear layer.” JFM, 76 3 (1976) 561–592.MATHADSCrossRefGoogle Scholar
  29. 29.
    Freymuth, P.: “On transition in a separated laminar boundary layer.” JFM, 25 4 (1966) 683–704.ADSCrossRefGoogle Scholar
  30. 30.
    Michalke, A.: “On spatially growing disturbances in an inviscid shear layer”. JFM, 23 3 (1965) 521–544.ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Winant, C.D.; Browand, F.K.: “Vortex pairing: the mechanism of turbulent mixinglayer growth at moderate Reynolds number.” JFM, 63 2 (1974) 237–255.ADSCrossRefGoogle Scholar
  32. 32.
    Moore, D.W.; Saffmann, P.G.: “The density of organized vortices in a turbulent mixing layer.” JFM, 69 (1975) 465–473.MATHADSCrossRefGoogle Scholar
  33. 33.
    Starr, V.P.: “Physics of negative viscosity phenomena.” McGraw Hill 1968.Google Scholar
  34. 34.
    Takaki, R.: Private communication.Google Scholar
  35. 35.
    Knight, D.: 32ndMeeting of the APS. Nov. 18-20 1979.Google Scholar
  36. 36.
    Miksad, R.W.: “Experiments on the nonlinear stages of free-shear-layer transition.” JFM, 56 4 (1972) 595–719.Google Scholar
  37. 37.
    Narasimha, R.; Sreenivasan, K.R.: “Relaminarization of fluid flows.” Advances in applied mechanics, 19 Academic Press 1979.Google Scholar
  38. 38.
    Batt, R.G.: “Some measurements on the effect of tripping the two-dimensional shear layer.” AIAA J., 13 2 (1975) 245–246.ADSCrossRefGoogle Scholar
  39. 39.
    Foss, J.F.: “The effect of the laminar/turbulent boundary states on the development of a plane mixing layer.” Proc. 1st Intern. Symp. on turbulent shear flows. The Penn. State Univ. 1977.Google Scholar
  40. 40.
    Oster, D.: “An experimental investigation of the two-dimensional turbulent mixing layer.” M.Sc.-Thesis, Tel Aviv University 1976.Google Scholar
  41. 41.
    Fiedler, H.; Thies, H.J.: “Some observations in a large two-dimensional shear layer.” Lecture Notes in Physics 75 Berlin: Springer 1978 108–117.Google Scholar
  42. 42.
    Birch, S.F.; Eggers, J.M.: “A critical review of the experimental data for developed free turbulent shear layers.” Free Turbulent Shear Flows, Vol. 1, Conf. Proc., NASA Rep. No. SP-321 (1973).Google Scholar
  43. 43.
    Hussain, A.K.M.F.; et al: Private communication.Google Scholar
  44. 44.
    Chandrsuda, C.; et al: “Effect of free-stream turbulence on large structures in turbulent mixing layers.” Dept. Aerodynamics, Imperial College, London (1976).Google Scholar
  45. 45.
    Pui, N.K.; Gartshore, I.S.: “Measurements of the growth rate and structure in plane turbulent mixing layers.” JFM, 91 1 (1979) 111–130.ADSCrossRefGoogle Scholar
  46. 46a.
    Hussain, A.K.M.F.; Zedan, M.F.: “Effects of the initial condition on the axisymmetric free shear layer: Effects of the initial momentum thickness.” Phys. Fluids, 21 12 (1978) 1100–12.CrossRefADSGoogle Scholar
  47. 46b.
    Hussain, A.K.M.F.; Zedan, M.F.: “Effects of the initial condition on the axisymmetric free shear layer: Effect of the initial fluctuation level.” Phys. Fluids, 21 12 (1978) 1475–81.Google Scholar
  48. 47.
    Browand, F.K.; Latigo, B.O.: “The growth of the two-dimensional mixing layer from a turbulent and non-turbulent boundary layer.” Physics of Fluids, 22 6 (1979) 1011–1019.CrossRefADSGoogle Scholar
  49. 48.
    Liepmann, H.W.; Laufer, J.: “Investigation of free turbulent mixing". N.A.C.A. Techn. Note No. 1257, (1947).Google Scholar
  50. 49.
    Bradshaw, P.: “The effect of initial conditions on the development of a free shear layer”. JFM, 26 2 (1966) 225–236.ADSCrossRefGoogle Scholar
  51. 50.
    Browand, F.K.; Troutt, T.: A note on spanwise structure in the two-dimensional mixing layer.” JFM, 97 4 (1980) 771.ADSCrossRefGoogle Scholar
  52. 51.
    Jimenez, J.: “On the origin and evolution of three-dimensional effects in the mixing layer.” Fin. Techn. Rep., DAERO-78-G-079, Dec. 1979 School of Aeronautics, Univ. Politechnica, Madrid.Google Scholar
  53. 52.
    Clark, J.A.; Kit, L.: “Shear layer transition and the sharp-edge orifice.” ASME, Fluids Eng. Conf., New Orleans, LA., March 1980.Google Scholar
  54. 53.
    Zaman, K.M.B.Q.; Hussain, A.K.M.F.: “Turbulence suppression in free shear flows by controlled excitation." Report FM-7, Univ. of Houston 1979.Google Scholar
  55. 54.
    Crighton, D.G.; Gaster, M.: “Stability of slowly diverging jet flow.” JFM, 77 2 (1976) 397–413.MATHADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. E. Fiedler
    • 1
  • B. Dziomba
    • 1
  • P. Mensing
    • 1
  • T. Rösgen
    • 2
  1. 1.Hermann-Föttinger-Institut für Thermo- und FluiddynamikTechnische Universität BerlinGermany
  2. 2.California Institute of TechnologyUSA

Personalised recommendations