The theory of G∞ supermanifolds

  • Charles P. Boyer
  • Samuel Gitler
Representation Theory
Part of the Lecture Notes in Physics book series (LNP, volume 135)


Tangent Bundle Integrability Problem Invariant Subgroup Inverse Mapping Theorem Grade Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Berezin and G. I. Kac, Math. USSR Sborni 11, 311 (1970); F. A. Berezin and D. A. Leites, Sov. Math. Dokl. 16, 1218 (1975).CrossRefGoogle Scholar
  2. 2.
    B. Kostant, in Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics 570 (Springer-Verlag, New York, 1977).Google Scholar
  3. 3.
    M. Bachelor, Trans. Amer. Math. Soc. 253, 329 (1979);ibid,258, (1980); in Group Theoretical Methods in Physics, Lecture Notes in Physics 94 (Springer-Verlag, New York, 1979).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Rodgers, Imperial College preprint ICTP/78-79/15.Google Scholar
  5. 5.
    V. Rittenberg and M. Scheunert, J. Math. Phys. 19, 709 (1973).MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    L. Corwin, Y. Ne'eman, and S. Sternberg, Rev. Mod. Phys. 47, 573 (1975); V. G. Kac, Adv. Math. 26, 8 (1977); M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics 716 (Springer-Verlag, New York, 1979)MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    I. M. Singer and S. Sternberg, J. Anal. Math. 15, 1 (1965).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Goldschmidt and D. C. Spencer, Acta Math. 136, 103 (1976); H. Goldschmidt, Bull. Amer. Math. Soc. 84, 531 (1978).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. P. Boyer, J. Pure Appl. Alg. 13, 1 (1980).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Charles P. Boyer
    • 1
  • Samuel Gitler
    • 2
  1. 1.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad National Autónoma de MéxicoMexico
  2. 2.Departamento de MateméticasCentro de Investigaciones y Estudios Avanzados. Instituto Politécnico National de MéxicoMéxico

Personalised recommendations