Representation theory of compact groups

Polynomial space group tensors

  • D. Phaneuf
  • R. T. Sharp
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 135)


Brillouin Zone Continuous Phase Transition Irreducible Tensor Group Theoretical Method Magnetic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Patera, R. T. Sharp, and P. Winternitz, J. Math. Phys. 19, 2362 (1978).MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    P. E. Desmier and R. T. Sharp, J. Math. Phys. 20, 74 (1979).MATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    S. C. Miller and W. F. Love, “Tables of IR's of space groups and co-representations of magnetic space groups”, (Pruett Press, Boulder, Col. 1967).Google Scholar
  4. 4.
    J. L. Birman, “Theory of crystal space groups and infra-red and Raman processes in crystals”, Handbuch der Physik 25/2b (Springer-Verlag, Berlin 1974).Google Scholar
  5. 5.
    I.V.V. Raghavacharyulu, Can J. Phys. 39, 830 (1961).MATHMathSciNetADSGoogle Scholar
  6. 6.
    M. V. Jarić and J. L. Birman, J. Math. Phys. 18, 1456 (1977).CrossRefADSMATHGoogle Scholar
  7. 7.
    M. V. Jarié and J. L. Birman, J. Math. Phys. 18, 1459 (1977).CrossRefADSGoogle Scholar
  8. 8.
    J. L. Birman, “Symmetry change in continuous phase transitions in crystals”, Second international colloquium on group theoretical methods in physics. (Nijmegen, 1972) ed. A. Janner.Google Scholar
  9. 9.
    J. Patera and R. T. Sharp, J. Phys. A: Math. Gen. 13 ( 397 ) 1980.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • D. Phaneuf
    • 1
  • R. T. Sharp
    • 1
  1. 1.Physics DepartmentMcGill UniversityMontrealCanada

Personalised recommendations