Geometry of projective asymptotic twistor space

  • Gabriel G. Lugo
Part of the Lecture Notes in Physics book series (LNP, volume 135)


We show that asymptotic twistor space PJ+ is an Einstein Kähler manifold of positive curvature. We relate the curvature of PJ+ to the CR-curvature of its boundary and we show that the function defining the boundary satisfies the complex Monge-Ampere equations.


Complex Manifold Twistor Space Real Hypersurface Bergman Kernel Positive Scalar Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. P. Boyer, J. D. Finley and J. F. Plebanski, “Complex general relativity, К and КК-spaces.” Einstein Memorial Volume. Plenum, N. Y. 1979.Google Scholar
  2. [2]
    R. O. Hansen, E. T. Newman, R. Penrose and K. P. Tod, “The metric and curvature properties of К-space,” Proc. Roy. Soc. Lond. A363 (1978) 445–468.MathSciNetADSGoogle Scholar
  3. [3]
    R. Penrose, “Non-linear gravitons and curved twistor theory.” G.R.G. 7, 1 (1976) 35–52.MathSciNetGoogle Scholar
  4. [4]
    R. S. Ward, Ph.D. Thesis. Oxford, 1977.Google Scholar
  5. [5]
    M. Ko, E. T. Newman and R. Penrose, “The Kähler structure of asymptotic twistor space.” J.M.P. 18, 1 (1977) 58–64.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Lugo, “Structure of asymptotic twistor space,” submitted to J.M.P. (1980).Google Scholar
  7. [7]
    S. S. Chern and J. K. Moser, “Real hypersurfaces in complex manifolds,” Acta. Math. 133 (1974) 219–270.MathSciNetCrossRefGoogle Scholar
  8. [8]
    C. L. Fefferman, “Mange-Ampere equations, the Bergman kernel and geometry of pseudoconvex domains.” Annals. Math. 103 (1976) 395–416.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    D. Burns and S. Shnider, “Real hypersurfaces in complex manifolds.” Proc. Symp. Pure. Math. 30 (1977) 141–167.MATHMathSciNetGoogle Scholar
  10. [10] a)
    S. Webster, “On the pseudoconformal geometry of Kähler manifolds,” Math. Zeitschrift 157 (1977) 265–270.MATHMathSciNetCrossRefGoogle Scholar
  11. [10] b)
    —, “Kähler metrics associated with real hypersurfaces.” Comm. Math. Helv. 52 (1977) 235–250.MATHMathSciNetCrossRefGoogle Scholar
  12. [11]
    P. Tod. Twistor Newsletter 9. Oxford preprint (1979).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Gabriel G. Lugo
    • 1
  1. 1.Department of MathematicsUniversity of KansasLawrence

Personalised recommendations