Advertisement

Complex plane representation of the Geroch group and a proof of a geroch conjecture

  • I. Hauser
Relativity
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Keywords

Minkowski Space Holomorphic Extension Complex Scalar Field Einstein Vacuum Holomorphic Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Geroch, J. Math. Phys. 12, 918 (1971); 13, 394 (1972).MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    W. Kinnersley and D. M. Chitre, J. Math. Phys. 18, 1538 (1977); 19, 1926 (1978); 19, 2037 (1978).CrossRefADSGoogle Scholar
  3. 3.
    C. Hoenselaers, W. Kinnersley,and B. Xanthopoulos, J. Math. Phys. 20, 2530 (1979).CrossRefADSGoogle Scholar
  4. 4.
    B. Xanthopoulos, preprint.Google Scholar
  5. 5.
    I. Hauser and F. J. Ernst, submitted for publication.Google Scholar
  6. 6.
    I. Hauser and F. J. Ernst, Phys. Rev. D20, 362 (1979).MathSciNetADSGoogle Scholar
  7. 7.
    I. Hauser and F. J. Ernst, J. Math. Phys. 21, 1126 (1980).MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    F. J. Ernst, Phys. Rev. 167, 1175 (1968); J. Math. Phys. 15, 1409 (1974).CrossRefADSGoogle Scholar
  9. 9.
    J. Ehlers, Les Théories Relativistes de la Gravitation (CNRS, Paris, 1959)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • I. Hauser
    • 1
  1. 1.Illinois Institute of TechnologyChicago

Personalised recommendations