Hartree-Fock one-body dynamics and U(n) co-adjoint orbits

  • George Rosensteel
Nuclear Physics
Part of the Lecture Notes in Physics book series (LNP, volume 135)


Energy Function Tangent Vector Slater Determinant Phase Space Structure Exact Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Hartree, Proc. Camb. Phil. Soc. 24 (1927-28), 89.CrossRefGoogle Scholar
  2. 2.
    V. Fock, Z. Phys. 1 (1930), 126.ADSGoogle Scholar
  3. 3.
    M. Moshinsky, “Group Theory and the Many-Body Problem”, Gordon b Breach,N.Y., 1968Google Scholar
  4. 4.
    F.A. Matsen, Adv. Quantum Chem. 2 (1978), 223.Google Scholar
  5. 5.
    F.A. Matsen and C.J. Nelin, Int. J. Quantum Chem. 15 (1979), 751.CrossRefGoogle Scholar
  6. 6.
    C.J. Nelin and F.A. Matsen,in Lecture Notes in Physics, v. 94 (1978)Springer-Verlag, N.Y.Google Scholar
  7. 7.
    R. Abraham, “Foundations of Mechanics”, Benjamin, N.Y. 1967,§16.MATHGoogle Scholar
  8. 8.
    B. Kostant, Lecture Notes in Math.,v. 170, Springer-Verlag, N.Y. 1970.Google Scholar
  9. 9.
    J.-M. Souriau, “Structure des Systemes Dynamiques”, Dunod, Paris, 1970.MATHGoogle Scholar
  10. 10.
    D.J. Simms and N.M.J. Woodhouse, Lecture Notes in Physics, v.53, Springer-Verlag N.Y. 1976, §8.Google Scholar
  11. 11.
    V. Guillemin and S. Sternberg, “Geometric Asymplotics”, Math. Surveys, No. 14, AMS, Providence, R.I.1977,§4.Google Scholar
  12. 12.
    J. Sniatycki, “Geometric Quantization and Quantum Mechanics”, No. 30 Applied Math. Sci., Springer-Verlag, N.Y. 1980.MATHGoogle Scholar
  13. 13.
    S. Belyaev, Nucl. Phys. 64 (1965) 17.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    D.J. Rowe, A. Ryman and G. Rosensteel, “Many-Body quantum mechanics as a symplectic dynamical system”, preprintGoogle Scholar
  15. 15.
    G. Rosensteel and D.J. Rowe, “Non-determinantal Hartree-Fock”, preprint.Google Scholar
  16. 16.
    G. Rosensteel, “Hartree-Fock-Bogoliubov Theory without quasiparticle vacua”, preprint.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • George Rosensteel
    • 1
  1. 1.Department of Physics and Quantum Theory GroupTulane UniversityNew OrleansUSA

Personalised recommendations