Collective motion, composite particle structure, and symplectic groups in nuclei

  • P. Kramer
  • Z. Papadopolos
Nuclear Physics
Part of the Lecture Notes in Physics book series (LNP, volume 135)


Operator Algebra Collective Motion Symplectic Group Collective Group Linear Canonical Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AR 75.
    F. Arickx, P.Van Leuven and M. Bouten, Z. Phys. A 273 (1975) 205CrossRefGoogle Scholar
  2. BA 68.
    V. Bargmann in: Analytic Methods in Mathematical Physics, New York 1968Google Scholar
  3. BR 75.
    M. Brunet and P. Kramer in: Lecture notes in Physics vol. 50, Berlin 1976Google Scholar
  4. BR 80.
    M. Brunet and P. Kramer Rep. Math. Phys. 15 (1979) 287MATHMathSciNetCrossRefGoogle Scholar
  5. KR 68.
    P. Kramer and M. Moshinsky in: Group Theory and its Applications vol. I, New York 1968Google Scholar
  6. KR 75.
    P. Kramer, M. Moshinsky and T.H. Seligman in: Group Theory and its Applications vol. III, New York 1975Google Scholar
  7. KR 80.
    P. Kramer, G. John and D. Schenzle, Group Theory and the Interaction of Composite Nucleon Systems, Braunschweig 1980Google Scholar
  8. MO 70.
    M. Moshinsky and C. Quesne, J. Math. Phys. 11 (1970) 1631MATHMathSciNetCrossRefGoogle Scholar
  9. RO 78.
    D.J. Rowe in: Lecture Notes in Physics vol. 79, Berlin 1978Google Scholar
  10. VA 77.
    V.V. Vanagas, Lecture Notes, Univ. of Toronto 1977Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • P. Kramer
    • 1
  • Z. Papadopolos
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenGermany

Personalised recommendations