Group theory and nuclear high spin phenomena

  • J. P. Draayer
  • C. S. Han
Nuclear Physics
Part of the Lecture Notes in Physics book series (LNP, volume 135)


A microscopic interpretation of the coherent/critical phenomenon known as backbending, in which certain deformed nuclei, looked upon as rotating spheriods, show a marked increase in their effective moment of inertia at some critical value of the total angular momentum, is presented. As shell-model calculations in a basis constructed from a direct product of single-particle orbitals leads to matrix dimensionalities that are enormous, truncation is required. The complementary roles group theory and methods of statistical spectroscopy play in the selection of a physically significant coupling scheme are illustrated. A weak coupling model of the normal and abnormal parity orbitals organized into SU(3) and R(5) multiplets, respectively, shows pair alignment to be the primary mechanism responsible for backbending but band mixing can be competitive and lead to anomalous E2 behavior. Results for 126Ba are given.


Total Angular Momentum Effective Moment High Weight State Yrast Band Yrast State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bohr and B. R. Mottelson, in Proceedings of the International Conference on Nuclear Structure, edited by T. Marumori (Japan, 1977) J. Phys. Soc. Japan 44, Suppl. 157 (1978).Google Scholar
  2. 2.
    A. Faessler, W. Greiner and R. K. Sheline, Nucl. Phys. 62 (1965) 241.CrossRefGoogle Scholar
  3. 3.
    F. S. Stephens and R. S. Simon, Nucl. Phys. A183 (1972) 257.ADSGoogle Scholar
  4. 4.
    Alan L. Goodman, in Advances in Nuclear Physics, Vol. 11, edited by J. W. Nagele and Erich Vogt (Plenum, New York, 1978).Google Scholar
  5. 5.
    R. D. Ratna Raju, K. T. Hecht, B. D. Chang and J. P. Draayer, Phys. Rev. 20C (1979) 2397.ADSGoogle Scholar
  6. 6.
    R. D. Ratna Raju, J. P. Draayer and K. T. Hecht, Nucl. Phys. A202 (1973) 433.ADSGoogle Scholar
  7. 7.
    T. R. Halemane, K. Kar and J. P. Draayer, Nucl. Phys. A311 (1978) 301.ADSGoogle Scholar
  8. 8.
    J. E. Koops and P. W. M. Glaudemans, Z. Physik A280 (1977) 181.ADSGoogle Scholar
  9. 9.
    T. T. S. Kuo, Nucl. Phys. A103 (1967) 71.ADSGoogle Scholar
  10. 10.
    J. P. Elliott, Proc. Roy. Soc. A245 (1958) 128, 562; J. P. Elliott and M. Harvey, Proc. Roy. Soc. A272 (1963) 557.ADSGoogle Scholar
  11. 11.
    A. K. Kerman, Ann. Phys. 12 (1961) 300; A. K. Kerman, R. D. Lawson, M. H. Macfarlane, Phys. Rev. 124(1961) 162.CrossRefADSGoogle Scholar
  12. 12.
    Alan L. Goodman, Nucl. Phys. A331 (1979) 401.ADSGoogle Scholar
  13. 13.
    J. P. Schiffer, in Two-Body Forces in Nuclei, edited by S. M. Austin and G. M. Crawley (Plenum, New York, 1972).Google Scholar
  14. 14.
    J. P. Draayer, Nucl. Phys. A216 (1973) 457.ADSGoogle Scholar
  15. 15.
    D. Braunschweig and K. T. Hecht, Phys. Lett. 77B (1978) 33.ADSGoogle Scholar
  16. 16.
    D. Braunschweig, Comp. Phys. Commun. 14 (1978) 109; 15 (1978) 259.CrossRefADSGoogle Scholar
  17. 17.
    Y. Akiyama and J. P. Draayer, Comp. Phys. Commun. 5 (1973) 405.CrossRefADSGoogle Scholar
  18. 18.
    K. T. Hecht, Nucl. Phys. A102 (1967) 11; R. P. Hemenger and K. T. Hecht, Nucl. Phys. A145 (1970) 468.ADSGoogle Scholar
  19. 19.
    G. Seiler-Clark, D. Husar, R. Novotny, H. Gräf and D. Pelte, Phys. Lett. 80B (1979) 345.ADSGoogle Scholar
  20. 20.
    C. Flaum, D. Cline, A. W. Sunyar, O. C. Kistner, Y. K. Lee and J. S. Kim, Nucl. Phys. A264 (1976) 291; C. Flaum and D. Cline, Phys. Rev. 14C (1976) 1224.ADSGoogle Scholar
  21. 21.
    A. P. deLima, J. H. Hamilton, A. V. Ramayya, B. van Nooijen, R. M. Ronningen, H. Kawakami, R. B. Piercey, E. deLima, R.L. Robinson, H. J. Kim, W. K. Tuttle, L. K. Peker, F. A. Rickey and R. Popli, Phys. Lett. 83B (1979) 43.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. P. Draayer
    • 1
  • C. S. Han
    • 1
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton Rouge

Personalised recommendations