Advertisement

Classical solutions of non-linear σ-models and their quantum fluctuations

  • Allan M. Din
Gauge Theories
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Abstract

I study the properties of O(N) and CPn−1 non-linear σ-MOELS in the two dimensional Euclidean space. All classical solutions of the equations of motion can be characterized and in the CPn−1 model they can be expressed in a simple and explicit way in terms of holomorphic vectors. The topological winding number and the action of the general CPn−1 solution can be evaluated and the latter turns out always to be an integer multiple of 2π. I further discuss the stability of the solutions and the problem of one-loop calculations of quantum fluctuations around classical solutions.

Keywords

Classical Solution Quantum Fluctuation Dimensional Euclidean Space Instanton Solution Finite Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J. Eells and J.H. Sampson, Amer. Journ. Math. 86 (1964) 109.MATHMathSciNetCrossRefGoogle Scholar
  2. 2).
    J. Eells and L. Lemaire, Bull. London Math. Soc. 10 (1978) 1.MATHMathSciNetCrossRefGoogle Scholar
  3. 3).
    J. Barbosa, Trans. Am. Math. Soc., vol. 210 (1975) 75.MATHMathSciNetCrossRefGoogle Scholar
  4. 4).
    M.J. Borchers and W.D. Garber, Comm. Math. Phys. 72 (1980) 77.MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5).
    H. Eichenherr, Nucl. Phys. B146 (1978) 215CrossRefADSGoogle Scholar
  6. 5a).
    E. Cremmer and J. Scherk, Phys. Letters 74B (1978) 341ADSGoogle Scholar
  7. 5b).
    V. Golo and A. Perelomov, Phys. Letters 79B (1978) 112.ADSGoogle Scholar
  8. 6).
    A.M. Din, P. di Vecchia and W.J. Zakrzewski, Nucl. Phys. B155 (1979) 447.CrossRefADSGoogle Scholar
  9. 7).
    B. Berg and M. Lüscher, Comm. Math. Phys. 69 (1980) 57.CrossRefADSGoogle Scholar
  10. 8).
    A.M. Din and W.J. Zakrzewski, CERN-TH-2722 (1979) (Lett. Nuovo Cim. to appear)Google Scholar
  11. 8a).
    A.M. Din and W.J. Zakrzewski, Nucl. Phys. B168 (1980) 173.MathSciNetCrossRefADSGoogle Scholar
  12. 9).
    A.M. Din and W.J. Zakrzewski, LAPP-TH-17 (1980).Google Scholar
  13. 10).
    A.M. Din and W.J. Zakrzewski, LAPP-TH-21 (1980).Google Scholar
  14. 11).
    V. Glaser and R. Stora, private communication.Google Scholar
  15. 12).
    J.L. Richard and A. Rouet, Marseille preprint ß0/P.1191 (1980).Google Scholar
  16. 13).
    A. D'Adda, P. di Vecchia and M. Lüscher, Nucl. Phys. B146 (1978) 63 and Nucl. Phys. B152 (1978) 125.CrossRefADSGoogle Scholar
  17. 14).
    E. Witten, Nucl. Phys. B149 (1979) 285.CrossRefADSGoogle Scholar
  18. 15).
    T. Affleck, Harvard preprint HUTP-80/AO04 (1980).Google Scholar
  19. 16).
    A. Jevicki and H. Levine, Harvard preprint HUTP-80/AO17 (1980); Brown preprint ] BROWN-HET-418 (1980).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Allan M. Din
    • 1
  1. 1.Laboratoire d'Annecy de Physique des ParticulesAnnecy-le-VieuxFrance

Personalised recommendations