Advertisement

Solitons as sections in non trivial bundles

  • Luis J. Boya
  • Juan Mateos
Gauge Theories
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Abstract

We interpret soliton solutions to classical wave equations as sections in some vector bundles; the peculiarity of soliton behaviour comes from the non-trivial character of the fibration, which also includes the “broken symmetry” aspect. We review in this light the most well-known cases: Kink, sine-Gordon soliton, vortex, monopole and instanton, and make contact with the former homotopy classification through the construction of bundles over spheres.

Keywords

Vector Bundle Line Bundle Fibre Bundle Chern Class Trivial Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Scott A.C. et al Proc. I.E.E. 61, 1443 (1973)CrossRefADSGoogle Scholar
  2. [2]
    Rajaraman, R. Phys. Lett 21C, 5 (1975) (Physics Reports).Google Scholar
  3. [3]
    Coleman, S. Erice Lectures 1975 (Zichichi ed., Academic Press 1977).Google Scholar
  4. [4]
    Boya L.J., Cariñena J.F. and Mateos J.: To appear (1978) in “Fortschritte der Physik”.Google Scholar
  5. [5]
    Wu T.T. and Yang, C.N.: Phys. Rev. D12, 3845, (1975).MathSciNetADSGoogle Scholar
  6. [6]
    Steenrod, N: The topology of fibre bundles. Princeton U.P. (1951).Google Scholar
  7. [ 7]
    Milnor J.: Characteristic classes. American Math. Soc. Pub. 76, (1974).Google Scholar
  8. [8]
    Trautman, A.: Rep. Math. Phys. (Poland) 1, 29 (1970)MATHMathSciNetCrossRefADSGoogle Scholar
  9. [ 9]
    Cho Y.: J. Math. Phys. 16, 2029 (1975)CrossRefADSGoogle Scholar
  10. [10]
    Mayer M.E. and Dreschler W.: Lectures on Fibre bundles and gauge theories (Lecture Notes in Physics No 67, 1977).Google Scholar
  11. [11]
    Koszul, J.L.: Differential Geometry. Tata Institute (India), 1967.Google Scholar
  12. [12]
    Hirzebruch, F.: Topological Methods in Algebraic Geometry. Springer, 1966.Google Scholar
  13. [13]
    Kobayashi, I. and Nomizu K.: Foundations of Differential Geometry John Wiley; 1, 1963; 11, 1969; quoted as“Nomizu”.Google Scholar
  14. [14]
    Kostant B.: Quantization and group representations: in “Lectures in analysis and Applications III” (Lecture Notes in Mathematics, 170; Springer, 1970). García P.L.: Cuantificación Geométrica (Salamanca, 1976).Google Scholar
  15. [15]
    Wu T.T. and Yang C.N.: Nucl. Phys. B107, 365 (1976)MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    Nielsen H.B. and Olesen P.: Nucl. Phys. B61, 45 (1973)CrossRefADSGoogle Scholar
  17. [17]
    Dirac P.A.M.: Phys. Rev. 74, 817 (1948).MATHMathSciNetCrossRefADSGoogle Scholar
  18. [18]
    Stora R.: “Gauge Theories” (Cargèse Lectures 1976; Marseille preprint).Google Scholar
  19. [19]
    Mayer, M.E.: Lecture Notes in Math. 570 (Bonn Symposium) (pág. 307); Springer 1976.Google Scholar
  20. [20]
    Wu T.T. and Yang C.N.: Phys. Rev. D16, 1018, (1977).ADSGoogle Scholar
  21. [21]
    Polyakov, A.M.-Phys.B120, 429 (1977).MathSciNetGoogle Scholar
  22. [22]
    Jackiw, R. and Rebbi, C. Phys. Rev. D16, 1052 (1977) and previous work.MathSciNetADSGoogle Scholar
  23. [23]
    Nielsen, H.B. and Schroer, B.-Nucl. Phys. B127, 493 (1977).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Luis J. Boya
    • 1
  • Juan Mateos
  1. 1.Departamento de Física Teórica Facultad de Ciencias Universidad de SalamancaSalamancaSpain

Personalised recommendations