Advertisement

Killing tensors and variable separation for Hamilton-Jacobi equations

  • Willard MillerJr.
Differential equations
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Keywords

Poisson Bracket Helmholtz Equation Jacobi Equation Separable System Symmetry Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kalnins, E.G. and Miller, W. Jr., Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations, SIAM J. Math. Anal. (to appear.)Google Scholar
  2. [2]
    Kalnins, E.G. and Miller, W. Jr., Killing tensors and nonorthogonal variable separation for Hamilton-Jacobi and Helmholtz equations, SIAM J. Math. Anal. (to appear).Google Scholar
  3. [3]
    Arnold, V.I., “Mathematical Methods of Classical Mechanics”, Springer Verlag, New York, 1978.MATHGoogle Scholar
  4. [4]
    Boyer, C., Kalnins, E.G. and Miller, W. Jr., Commun. Math. Phys. 59, 285–302 (1978).MATHMathSciNetCrossRefADSGoogle Scholar
  5. [5]
    Benenti, S. and Francaviglia, M., The theory of separability of the Hamilton-Jacobi equation and its application to general relativity, in “General Relativity and Gravitation, Vol. 1”, A Held, ed., Plenum, New York, 1980.Google Scholar
  6. [6]
    Levi-Civita, T., Math. Ann. 59, 383–397 (1904).MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Kalnins, E.G. and Miller, W. Jr., Separable coordinates for three-dimensional complex Riemannian spaces, J. Diff. Geometry (1979)Google Scholar
  8. [8]
    Kalnins, E.G. and Miller, W. Jr., J. Phys. A: Math. Gen., 12, 1129–1147 (1979).MATHMathSciNetCrossRefADSGoogle Scholar
  9. [9]
    Benenti, S., Separability structures on Riemannian manifolds, Proceedings of “Conference on Differential Geometrical Methods in Mathematical Physics”, Salamanca 1979, Springer-Verlag (to appear).Google Scholar
  10. [10]
    Eisenhart, L.P., “Riemannian Geometry”, Princeton University Press, Princeton (2nd printing), 1949.MATHGoogle Scholar
  11. [11]
    Miller, W. Jr., Patera, G. and Winternitz, P., Subgroups of Lie groups and separation of variables, J. Math. Phys., (to appear).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Willard MillerJr.
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolis

Personalised recommendations