Advertisement

The lie theory of extended groups in classical mechanics — Is it of relevance to quantum mechanics?

  • P. G. L. Leach
Canonical Transformation and Quantum Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Keywords

Point Transformation Proper Ideal Linear Canonical Transformation Newtonian System Isotropic Harmonic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. R. Lewis, Jr., Phys. Rev. Letters, 18, 510–512 (1967).CrossRefADSGoogle Scholar
  2. [2]
    H. R. Lewis, Jr., J. Math. Phys., 9, 1976–1986 (1968).MATHCrossRefADSGoogle Scholar
  3. [3]
    H. R. Lewis Jr. and W. B. Riesenfeld, J. Math. Phys., 10, 1458–1473 (1969).MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    C. J. Eliezer and A. Gray, SIAM J. Appl. Maths., 30, 463–468 (1976).MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    K. B. Wolf, J. Math. Phys., 17, 601–613 (1976).MATHCrossRefADSGoogle Scholar
  6. [6]
    K. B. Wolf, Integral Transforms in Science and Engineering (Plenum Press, New York, 1979) Part IV.MATHGoogle Scholar
  7. [7]
    N. J. Günther and P. G. L. Leach, J. Math. Phys., 18, 572–576 (1977)CrossRefADSGoogle Scholar
  8. [8]
    P. G. L. Leach, J. Math. Phys., 19, 446–451 (1978).MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    P. G. L. Leach, J. Math. Phys., 21, 32–37 (1980).MATHMathSciNetCrossRefADSGoogle Scholar
  10. [10]
    C. E. Wulfman and B. J. Wybourne, J. Phys. A, 9, 507–518 (1976).MATHMathSciNetCrossRefADSGoogle Scholar
  11. [11]
    R. L. Anderson and S. M. Davison, J. Math. Anal. Applic., 48, 301–315 (1974).MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Lutzky, J. Phys. A, 11, 249–258 (1978).MATHMathSciNetCrossRefADSGoogle Scholar
  13. [13]
    P. G. L. Leach, AM79:02 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  14. [14]
    G. E. Prince and C. J. Eliezer, J. Phys. A, 13, 815–823 (1980).MATHMathSciNetCrossRefADSGoogle Scholar
  15. [15]
    P. G. L. Leach, AM79:04 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  16. [16]
    G. E. Prince and P. G. L. Leach, AM79:13 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  17. [17]
    P. G. L. Leach, AM79:10 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  18. [18]
    J. A. Kobussen, Research Report, Institut für Theoretische Physiköpr Universität Zürich, Schönberggasse 9, 8001, Zürich.Google Scholar
  19. [19]
    G. E. Prince, La Trobe University, work in progress (private communication).Google Scholar
  20. [20]
    A. O. Barut and R. Raczka, Theory of Group Representations and Applications. (Polish Scientific Publishers, Warsaw 1977) 49.MATHGoogle Scholar
  21. [21]
    P. G. L. Leach, AM80:02 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  22. [22]
    G. E. Prince, AM80:03 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  23. [23]
    G. E. Prince and C. J. Eliezer, AM79:06 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  24. [24]
    P. G. L. Leach, AM80:01 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  25. [25]
    P. G. L. Leach, AM79:12 Research Report, Department of Applied Mathematics, La Trobe University.Google Scholar
  26. [26]
    L. Y. Bahar, Drexel University, and W. Sarlet, Rijksuniversiteit Gent, work in progress (private communication).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • P. G. L. Leach
    • 1
  1. 1.Department of Applied MathematicsLa Trobe UniversityBundooraAustralia

Personalised recommendations