Advertisement

Bloch theorem for crystals with structural distortions

  • Daniel B. Litvin
Atomic, molecular, solid-State, and statistical physics
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Abstract

A new Bloch Theorem, based on wreath group symmetry, is formulated for crystals with structural distortions. This new Bloch Theorem is applied to determine the form and corresponding charge density of one electron eigenfunctions in the nearly free electron approximation for crystals with periodic structural distortions.

Keywords

Point Space Structural Distortion Operator Pair Crystallographic Group Bloch Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    V. A. Koptsik and J. N. Kotzev, Comm. JINR, P4-8067, P4-8068 (1974) Dubna.Google Scholar
  2. 2).
    V. A. Koptsik, Kristal un Technik 10 231 (1975).CrossRefGoogle Scholar
  3. 3).
    J. N.. Kotzev, Proceedings of the Neutron Diffraction Conference, Petten, The Netherlands (Reactor Center of Netherlands RCN-234, 1975) p. 126.Google Scholar
  4. 4).
    J. N. Kotzev, Proceedings International Symposium on Crystallographic Groups, Bielefeld, in press MATCH-Informal Communications in Mathematical Chemistry.Google Scholar
  5. 5).
    W. Opechowski, ibid. and in Group Theoretical Methods in Physics, Edited by R. T. Sharp and B. Kolman (Academic Press, NY 1977) p. 93.Google Scholar
  6. 6).
    V. A. Koptsik, Ferroelectrics 21 499 (1978).Google Scholar
  7. 7).
    V. A. Koptsik, Proceedings International Symposium on Crystallographic ] Groups, Bielefeld, in press MATCH-Informal Communications in Mathematical chemistry.Google Scholar
  8. 8).
    V. A. Koptsik, Doklady Akademii Nauk SSR 250 353 (1980).MATHMathSciNetGoogle Scholar
  9. 9).
    D. B. Litvin, Phys. Rev. 21 3184 (1980).MathSciNetCrossRefADSGoogle Scholar
  10. 10).
    D. B. Litvin, Annals of the Israel Physical Society, Vol. 3 Group Theoretical Methods in Physics, Editors L. Horwitz and Y. Ne'eman (APS, NY, 1980).Google Scholar
  11. 11).
    B. H. Neuman, Lectures on Topics in the Theory of Infinite Groups (Bombay, Tata Institute for Fundamental Research, 1961) Chapter V.Google Scholar
  12. 12).
    D. B. Litvin, Physics, in press (1980).Google Scholar
  13. 13).
    L. Jansen and M. Boon, Theory of Finite Groups, Applications in Physics (Amsterdam, North Holland 1967) p. 249.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Daniel B. Litvin
    • 1
  1. 1.Department of PhysicsThe Pennsylvania State UniversityReadingUSA

Personalised recommendations