Advertisement

Group theory of the Morse potential

  • Manuel Berrondo
  • Alejandro Palma
Atomic, molecular, solid-state, and statistical physics
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Abstract

We map the problem of a Morse potential in one dimension into a two-dimensional harmonic oscillator. The symmetry group for this problem is U(2). Starting from the dynamical group Sp(4), we use two different chains of groups including SU(1,1) and U(2) respectively.

Keywords

Symmetry Group Dynamical Group Morse Potential Algebraic Formulation Radial Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.M. Morse, Phys. Rev. 34, 57 (1929).MATHCrossRefADSGoogle Scholar
  2. [2]
    L. Pauling & E.B. Wilson, Introduction to Quantum Mechanics. (McGraw-Hill, New York, 1935).Google Scholar
  3. [3]
    M. Berrondo & A. Palma, J. Phys. A13, 773 (1980).MathSciNetADSGoogle Scholar
  4. [4]
    C.L. Pekeries, Phys. Rev. 45, 98 (1934).CrossRefADSGoogle Scholar
  5. [5]
    See e.g. J.N. Huffacker, J. Chem. Phys. 64, 3175 (1976).CrossRefADSGoogle Scholar
  6. [6]
    N. Cabrera, V. Celli, F.O. Goodman & R. Hanson, Surface Sci. 19, 67 (1970).CrossRefADSGoogle Scholar
  7. [7]
    A.P. Clark & A.S. Dickinson, J. Phys. B6, 164 (1973).ADSGoogle Scholar
  8. [8]
    N. Rosen, J. Chem. Phys. 1, 319 (1933).MATHCrossRefADSGoogle Scholar
  9. [9]
    R.D. Levine & C.E. Wulfman, Chem. Phys. Lett. 60, 372 (1979).CrossRefADSGoogle Scholar
  10. [10]
    W. Miller, Lie Theory and Special Functions, (Academic, New York, 1968).MATHGoogle Scholar
  11. [11]
    C. Quesne & M. Moshinsky, J. Math. Phys. 12, 1780 (1971).MATHMathSciNetCrossRefADSGoogle Scholar
  12. [12]
    J. N. Huffacker & P.H. Dwivedi, J. Math. Phys. 16, 862 (1975).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Manuel Berrondo
    • 1
  • Alejandro Palma
    • 2
  1. 1.Instituto de FísicaUniv. of MexicoMéxico 20
  2. 2.Instituto Mexicano del PetróleoMéxico 14

Personalised recommendations