Advertisement

Narrow-gap semiconductor detectors and lasers

  • I. Melngailis
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 133)

Abstract

The major applications of narrow-gap materials continue to be in infrared detectors for passive imaging and in diode lasers, primarily for high resolution spectroscopy and related uses. The development of sophisticated epitaxial growth and fabrication techniques is continually expanding the capability of both types of devices. Background-limited HgCdTe and Pb-salt photodiodes and diode arrays have been developed for detection in the 8–12 μm wavelength range. High speed (> 1 GHz) HgCdTe photodiodes with sensitivities close to the quantum limit have been developed for heterodyne detection. The feasibility of PbS and HgCdTe CCIDs has been investigated for advanced imaging applications.

In the Pb-salt laser area the temperature for cw operation has been increased well beyond 100K by the use of heterostructures, significantly higher output powers and longer lifetimes have been achieved and DFB structures have been developed. Advances in various epitaxial growth techniques in both HgCdTe and the Pb-salts and the demonstration of low-loss Pb-salt waveguides at 10 μm indicate that sophisticated integrated optical circuits could be developed in these materials for long wavelength optical communications and related applications.

Keywords

Molecular Beam Epitaxy Liquid Phase Epitaxy Heterodyne Detection Double Heterostructure HgCdTe Photodiode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Melngailis and A. J. Strauss, Appl. Phys. Lett. 8, 179 (1966).Google Scholar
  2. 2.
    T. C. Harman, J. Electron. Materials 8, 191 (1979).Google Scholar
  3. 3.
    G. Fiorito and G. Gasparini, Alta Frequenza 47, 114 (1978).Google Scholar
  4. 4.
    M. B. Reine and R. M. Broudy, Modern Utilization of Infrared Techology III SPIE 124, 80 (1977).Google Scholar
  5. 5.
    R. M. Broudy and M. B. Reine, Modern Utilization of Infrared Technology III SPIE 124, 62 (1977).Google Scholar
  6. 6.
    J. T. Longo et. al., Modern Utilization of Infrared Technology III SPIE 124, 102 (1977).Google Scholar
  7. 7.
    H. Prier, Appl. Phys. 20, 189 (1979).Google Scholar
  8. 8.
    P. Vohl and C. M. Wolfe, J. Electron. Materials 7, 659 (1978).Google Scholar
  9. 9.
    T. C. Harman, J. Electron. Materials 8, 191 (1979).Google Scholar
  10. 10.
    W. Rolls, R. Lee and R. J. Eddington, Solid State Electron. 13, 75 (1970).Google Scholar
  11. 11.
    J. T. Longo, E. R. Gertner and A. S. Joseph, Appl. Phys. Lett. 19, 202 (1971).Google Scholar
  12. 12.
    S. H. Groves, J. Electron. Materials 6, 195 (1977).Google Scholar
  13. 13.
    D. K. Hohnke and H. Holloway, Appl. Phys. Lett. 24, 633 (1974); D. K. Hohnke et. al., Appl. Phys. Lett. 29, 98 (1976).Google Scholar
  14. 14.
    D. L. Smith and V. Y. Pickhardt, J. Electron. Materials 5, 247 (1976).Google Scholar
  15. 15.
    J. N. Walpole et. al., Appl. Phys. Lett. 28, 552 (1976).Google Scholar
  16. 16.
    A. Lopez-Otero, Thin Solid Films 49, 1 (1978).Google Scholar
  17. 17.
    M. Bleicher et. al., J. Mater. Sci. 12, 317 (1977).Google Scholar
  18. 18.
    R. B. Schoolar, J. D. Jensen and G. M. Black, Appl. Phys. Lett. 31, 620 (1977).Google Scholar
  19. 19.
    H. Holloway and J. N. Walpole, Progress in Crystal Growth and Characterization, Vol. 2, B. Pamplin, Ed. (Pergamon Press, Oxford, England, 1980).Google Scholar
  20. 20.
    G. Fiorito, G. Gasparini and F. Svelto, Appl. Phys. Lett. 23, 448 (1973); Ibid., Infrared Phys. 17, 25 (1977); Ibid., Appl. Phys. 17, 105 (1978).Google Scholar
  21. 21.
    J. Marine and C. Motte, Appl. Phys. Lett. 23, 450 (1973).Google Scholar
  22. 22.
    A. M. Andrews et. al., Appl. Phys. Lett. 26, 438 (1975).Google Scholar
  23. 23.
    D. L. Spears, Infrared Phys. 17, 5 (1977); also D. L. Spears, 6th Annual Meeting, Federation of Analytical Chemistry and Spectroscopy Societies, Philadelphia, PA, (1979).Google Scholar
  24. 24.
    E. C. Sutton et. al, Astrophys. J. 230, L105 (1979); also A. L. Betz et. al., Astrophys. J. 221, L97 (1979).Google Scholar
  25. 25.
    R. T. Ku and D. L. Spars, Optics Letters 1, 84 (1977).Google Scholar
  26. 26.
    F. J. Leonberger, A. L. McWhorter and T. C. Harman, Appl. Phys. Lett. 26, 704 (1975).Google Scholar
  27. 27.
    R. A. Chapman et. al., Appl. Phys. Lett. 32, 434 (1978).Google Scholar
  28. 28.
    J. N. Walpole, S. H. Groves and T. C. Harman, IEEE Device Research Conf., Ithaca, N.Y. (1977).Google Scholar
  29. 29.
    J. N. Walpole et. al., Appl. Phys. Lett. 30, 524 (1974); also J. N. Walpole et. al., Appl. Phys. Lett. 29 307 (1976).Google Scholar
  30. 30.
    K. J. Linden, K. W. Mill and J. F. Butler, IEEE J. Quantum Electron. QE 13, 720 (1977).Google Scholar
  31. 31.
    S. H. Groves, K. W. Mill and A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).Google Scholar
  32. 32.
    K. J. Slegr, G. F. McLane and H. Strom, IEEE Electron. Devices Mtg., Washington, D. C. (1974).Google Scholar
  33. 33.
    H. Preier et. al., J. Appl. Phys. 47, 5476 (1976).Google Scholar
  34. 34.
    W. Lo, IEEE J. Quantum Electron. QE 13, 591 (1977).Google Scholar
  35. 35.
    R. W. Ralston et. al., IEEE J. Quantum Electron. QE 9, 350 (1973).Google Scholar
  36. 36.
    J. N. Walpole et. al., Appl. Phys. Lett. 23, 620 (1973).Google Scholar
  37. 37.
    W. Riedel and H. Prier, IEEE Device Research Conf., Ithaca, N.Y. (1977); also IEEE J. Quantum Electron., to be published.Google Scholar
  38. 38.
    J. N. Walpole et. al., J. Appl. Phys. 44, 2905 (1973).Google Scholar
  39. 39.
    R. W. Ralston et. al., J. Appl. Phys. 45, 1323 (1974).Google Scholar
  40. 40.
    R. W. Davis and J. N. Walpole, IEEE J. Quantum Electron. QE 12, 29 (1979).Google Scholar
  41. 41.
    W. Lo, 10th Intern. Conf. on Solid State Devices, Tokyo (1978).Google Scholar
  42. 42.
    R. W. Ralston et. al., Appl. Phys. Lett. 26, 64 (1975).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • I. Melngailis
    • 1
  1. 1.Lincoln LaboratoryMassachusetts Institute of TechnologyLexington

Personalised recommendations