Impurity states in high magnetic fields

  • R. Kaplan
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 133)


Narrow gap semiconductors typically possess low charge carrier effective masses and relatively high dielectric constants. Consequently, (1) donor and certain acceptor binding energies, Ry*, are small, and (2) carrier interaction energies with a magnetic field, ħwc, are large. For such materials the condition ħwc ⪞ Ry* can be achieved at modest field strengths. The impurity energy level spectra are then qualitatively different from their low field counter-parts. The theory of such impurity states and excitations will be reviewed, particularly with regard to the effects of non-parabolicity in the host crystal band structure. A detailed comparison will be made between theory and experiment for the case of donors in InSb.


Landau Level Impurity State Schrodinger Equation Effective Mass Approximation Ground State Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Zawadzki and J. Wlasak, “Magneto-Optics of Shallow Donors in Small-Gap Semiconductors,” Proceedings of the Advanced Study Institute on Theoretical Aspects and New Developments in Magneto-Optics, Antwerp, July 1979, to be published.Google Scholar
  2. 2.
    Y. Yafet, R.W. Keyes, and E.N. Adams, J. Phys. Chem. Solids 1, 137 (1956).Google Scholar
  3. 3.
    R.F. Wallis and H.J. Bowlden, J. Phys. Chem. Solids 7, 78 (1958).Google Scholar
  4. 4.
    D.M. Larsen, J. Phys. Chem. Solids 29, 271 (1968).Google Scholar
  5. 5.
    R.J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 196 (1960).Google Scholar
  6. 6.
    A. Baldereschi and F. Bassani, in Proceedings of the Tenth International Conference on the Physics of Semiconductors, Cambridge, Massachusetts, 1970, CONF-700801 (U.S. AEC, Oak Ridge, Tennessee, 1970), p. 191.Google Scholar
  7. 7.
    D. Cabib, E. Fabri, and G. Fiorio, Nuovo Cimento B10, 185 (1972).Google Scholar
  8. 8.
    H.C. Praddaude, Phys. Rev. A6, 1321 (1972).Google Scholar
  9. 9.
    J. Callaway, Phys. Lett. A40, 331 (1972).Google Scholar
  10. 10.
    E.R. Smith, R.J.W. Henry, G.L. Surmelian, R.F. O'Connell, and A.K. Rajagopal, Phys. Rev. D6, 3700 (1972).Google Scholar
  11. 11.
    G.L. Surmelian and R.F. O'Connell, Ap. J. 190, 741 (1974).Google Scholar
  12. 12.
    M. Ruderman, J. Mag. and Mag. Mat. 11, 269 (1979).Google Scholar
  13. 13.
    A.R.P. Rau and L. Spruch, Astrophys. J. 207, 671 (1976).Google Scholar
  14. 14.
    R. Bowers and Y. Yafet, Phys. Rev. 115, 1165 (1959).Google Scholar
  15. 15.
    P.J. Lin-Chung and B.W. Henvis, Phys. Rev. B12, 630 (1975).Google Scholar
  16. 16.
    D.M. Larsen, International Conf. on Applications of High Magnetic Fields in Semiconductor Physics, Würzburg, 1974, lecture notes, p. 295.Google Scholar
  17. 17.
    R. Kaplan, Phys. Rev. 181, 1154 (1969).Google Scholar
  18. 18.
    B.D. McCombe and R. Kaplan, Phys. Rev. Lett. 21, 756 (1968); B.D. McCombe, Phys. Rev. 181, 1206 (1969).Google Scholar
  19. 19.
    B.D. McCombe and R.J. Wagner, Phys. Rev. B4, 1285 (1971); B.D. McCombe, International Conf. on Applications of High Magnetic Fields in Semiconductor Physics, Würzburg, 1974, lecture notes, p. 146.Google Scholar
  20. 20.
    R. Kaplan, R.A. Cooke, and R.A. Stradling, Sol. State Comm. 26, 741 (1978).Google Scholar
  21. 21.
    G. Appold, H. Pascher, R. Ebert, U. Steigenberger, and M. von Ortenberg, Phys. Stat. Sol. B86, 557 (1978).Google Scholar
  22. 22.
    R. Kaplan, Phys. Rev. Lett. 20, 329 (1968).Google Scholar
  23. 23.
    F. Kuchar, J.C. Ramage, R.A. Stradling, and A. Lopez-Otero, J. Phys. C: Solid State Phys. 10, 5101 (1977).Google Scholar
  24. 24.
    J.H. Simpson, Proc. Roy. Soc. A197, 269 (1949).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. Kaplan
    • 1
  1. 1.Naval Research LaboratoryWashington, D. C.

Personalised recommendations