Advertisement

Foamed polymers based on reactive oligomers

  • Fyodor A. Shutov
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 39)

Abstract

This article surveys the specific features of polymer science for gas-filled polymers (main principles of their classification as well as the major problems of their physics, chemistry, technology and application). Special attention is given to the discussion of the author's findings concerning the morphology of foamed plastics based on reactive oligomers such as polyurethane, phenolic and urea-formaldehyde polymers. These findings evidence the presence in their cellular structure of micromorphological cells (size: 0.01–0.1 micron), which the author terms microcells. It is especially emphasized that these microcells represent the most fundamental and most widely used type of such foamed plastics. The number of these microcells is 102–103 times higher than that of the well-known macrocells; this is why the specific surface area of such polymer substances is larger than 200 m2/g. The physicochemical properties of oligomeric foamed polymers (thermooxidation, electrical and moisture absorption) are explained by the microcell concept. Future trends with regard to new starting materials, methods of preparation, technology, theoretical investigation and long-term perspectives of these plastic foames are discussed.

Keywords

Polyurethane Foam Apparent Density Moisture Absorption Furfuryl Alcohol Syntactic Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BET

Brunauer-Emmett-Teller method

DABCO

triethylenediamine/dipropylene glycol

DC

polymethylsiloxanes

FL-1

Soviet grade of resol phenol-formaldehyde foam

FRP-1

Soviet grade of resol phenol-formaldehyde foam

GSE

Gas-Structural Element

MDI

4,4′-diphenylisocyanate

MGF-1

α, ω-methacryl(bisethylenegly cole) phtalate

MGF-9

α, ω-methacryl(diethyleneglycole) phtalate

NMR

nuclear magnetic resonance method

OEA

oligoester acrylate

OEM

oligoester methacrylate

OFM

oligoester fumarate maleates

PEN-1

Soviet grade of epoxide-novolac phenolic foam

PF foam

phenol-formaldehyde foam

PPU-3

-3S, -102, -305, -305A, -307 Soviet grades of PUR foams

PUR foam

polyurethane foam

RO

reactive oligomer

SE

static electrization

SEP-1

Soviet grade of phenolicurethane foam

SFUP

Soviet grade of phenolicurethane foam

SIN

Simultaneous Interpenetrating Networks

TGM-3

tris(oxyethylene)-α, ω-(dimeth) acrylate

TMGF-11

α, ω-dimethacryl (1,3) bisglycerine-2-phtalate

UF foam

urea-formaldehyde foam

Abbreviations

a

sample thickness; coefficient

A

surface area of foamed plastic

A*o

amplitude of free nuclear induction

C1, C2, C3

empirical coefficients

d

thickness of struts; diameter of the water molecule

df

hydraulic diameter

D

diameter of cell; the most probable size of cells

Di

current diameter of cells

Ebr

breakdown voltage (dielectric strength)

f

frequency of electromagnetic field

F (x)

Weibull function

ħ

Planck constant

H

molar heat of phase transition

k

Boltzmann constant

K

empirical coefficient

K1, K2

coefficients of uniformity of cellular structure

l

length of rib of dodecahedron

la, lb, lc

traces of current via liquid foam

L

capillar length

m

mass of dry foam

mg

mass of gas

mw

mass of water

M

the arithmetic mean value

n

number of rows of foam models

P

porosity; pressure

P0

saturated vapor pressure

Δ Pf

drop of the pressure of liquid

ΔPg

drop of the pressure of water steam

Δ Pc

suction pressure of capillaries

q

electrostatic charge

Q

heat flow

r, R

cell radius

R1, R2

curvature radius

Re

Reynolds number

S

specific surface area

T

temperature

v

flow rate

V

geometric volume of foam

W

weight humidity

α

contact angle

γ

apparent density of foam

γf

density of liquid

γg

density of gas

γg

saturation density of gase phase

γp

density of polymer phase

γw

density of water

γ1

gyromagnetic ratio of the nucleus

Γ

gamma-function

δ

thickness of cell wall

tg δ

dielectric losses

ε

dielectric permeability

ηf

kinematic viscosity

κ

electroconductivity

ϑ

volume fraction of phase

ϑg

volume fraction of gas

ϑp

volume fraction of polymer phase

ϑw

volume fraction of water

ϑα

volume fraction of open cells

ϑ*w

volume fraction of equilibrium water

ϑw1

volume fraction of the monomolecular layer of absorbed water

ϑ*max

maximal value of ϑ*w

Θ

correction factor

λ

generalized conductivity

λi

Di/D

νi

the frequency of appearance of cells with size “i”

ρv

volumetric electroresistance

σ

surface tension coefficient; surface density of charge; root-mean-square deviation

τ

current time

τ*

time of equilibrium moisture absorption

τ1

longitudinal relaxation time

ϕ

relative humidity

χ

Pirson criterion

ψ

resistance coefficient

ω

volume humidity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Berlin, A. A.: Reactive oligomers and polymeric materials on their basis. First All-Union Conference on Polymerizable Oligomers, pp. 8–58. Moscow-Chernogolovka; USSR 1971. (In Russian)Google Scholar
  2. 2.
    Berlin, A. A., Matveeva, N. G.: J. Polym. Sci. Macromol. Rev. 12, 1 (1977)CrossRefGoogle Scholar
  3. 3.
    Berlin, A. A., Shutov, F. A.: Strengthened gas-filled plastics. Moscow, Chemistry 1980 (In Russian); Berlin, Heidelberg, New York, Springer (in translation), in preparationGoogle Scholar
  4. 4.
    Berlin, A. A., Shutov, F. A.: Foamed polymers based on reactive oligomers. Moscow: Khimiya 1978 (in Russian); Stamford/USA: Technomic (in translation)Google Scholar
  5. 5.
    Berlin, A. A., Shutov, F. A.: Basic principles of the chemistry and technology of gas-filled high polymers. Moscow: Nauka 1979 (in Russian)Google Scholar
  6. 6.
    Berlin, A. A.: Production of gas-filled plastics and elastomers. Moscow: GosKhimizdat 1953 (in Russian)Google Scholar
  7. 7.
    Berlin, A. A., Shutov, F. A., Aseeva, R. M.: Specific features of thermal oxidation of phenolic foams, Plasticheskie Massy 1971, No. 12, 41 (in Russian)Google Scholar
  8. 8.
    Shutov, F. A.: On an unknown type of morphology of phenolic plastic foams. 8th All-Union Conference on High-Molecular Compounds, Kazan/USSR, 1973 (in Russian)Google Scholar
  9. 9.
    Shutov, F. A.: The gas-structure element and a new classification of plastic foams. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1974 (in Russian)Google Scholar
  10. 10.
    Berlin, A. A., Shutov, F. A.: Gas-structure element of plastic foams. Second Internation Conference on the Mechanics and Technology of Composite Materials. Varna, Bulgaria 1979Google Scholar
  11. 11.
    Fedodeev, V. I., Litvinova, T. A.: State of water in phenolic plastic foams. Kolloidnyi Zhurnal 38, 756 (1976) (in Russian)Google Scholar
  12. 12.
    Shutov, F. A.: Problems and future of plastic foams based on reactive oligomers. Second All-Union Conference on the Chemistry and Physical Chemistry of Reactive Oligomers, Alma-Ata/USSR, 1979 (in Russian)Google Scholar
  13. 13.
    Sedov, A. N., Mikhailov, E. V.: Unsaturated polyester resins. Moscow: Khimiya 1977 (in Russian)Google Scholar
  14. 14.
    Berlin, A. A., Mezhikovsky, S. M.: Problems of polymer-oligomer compositions. Zh. Vses. Khim. Obshchest. 5, 531 (1976) (in Russian)Google Scholar
  15. 15.
    Berlin, A. A.: Chemistry and technology of reactive oligomers. Plaste u. Kautschuk 20, 728 (1973)Google Scholar
  16. 16.
    Plunguian, M., Cornell, E.: Process for forming foamed unsaturated polyester resins. US Pat. 3,896,060 (1974)Google Scholar
  17. 17.
    Jacobs, R. L., Backly, D. A., Simpson, J. V.: Low density resin foams. US Pat. 3,920,589 (1975), 3,920,591 (1975)Google Scholar
  18. 18.
    Minowa, S.: Porous composite materials. Japan Plastic Age 10, 36 (1972)Google Scholar
  19. 19.
    Gandini, A.: Furan derivatives in polymerization reactions. Advan. Polym. Sci. 25, 47 (1977)Google Scholar
  20. 20.
    Wade, R. C.: Flame retardant resinous foams based on furfuryl alcohol. Belgian Pat. 805,518 (1974), USA Pat. 3,865,757 (1974)Google Scholar
  21. 21.
    Van Leer Inds. Ltd.: Heat and fire resistant furfuryl alcohol foams. British. Pat. 1,487,204 (1977)Google Scholar
  22. 22.
    Van Leer Inds. Ltd.: Non-burning class 1 rating foams and a method of producing some. US Pat. 4,016,111 (1977)Google Scholar
  23. 23.
    Larsen, H. O., Barfoed, S., Cent John, A. G.: Polyfuran foams. US Pat. 3,975,318 (1976), 3,975,319 (1976)Google Scholar
  24. 24.
    VEB Farbenfab. Wolfen: Methylolketone resin foams. G. British Pat. 1,237,318 (1967), 1,238,666 (1967)Google Scholar
  25. 25.
    VEB Farbenfab. Wolten: Foamed polymers. British Pat. 1,213,116 (1966)Google Scholar
  26. 26.
    Frisch, K. C.: Miscellaneous foams. In: Plastic foams, Frisch, K. C., Saunders, J. H. (eds.), part II, pp. 770–781. New York: Marcel Dekker 1973Google Scholar
  27. 27.
    Guichard, M.: Impact resistant foams based on Coumarone indene resin. Belgian Pat. 862,226 (1978)Google Scholar
  28. 28.
    Markusch, P., Deuterich, D., Kunstler, N.: Verfahren zur Herstellung anorganisch-organischer Kunststoffe. BDR Pat. 2,559,255 (1977)Google Scholar
  29. 29.
    Lipatov, Yu. S., Sergeeva, L. M.: Synthesis and properties of interpenetrating networks. Usp. Khim. 45, 138 (1976) (in Russian)Google Scholar
  30. 30.
    Schafer, R. J. et al.: J. Cellular Plastics 14, 146 (1978)CrossRefGoogle Scholar
  31. 31.
    Chem. Anlagen Bischo (Reut.): Foams Prepared from Phenoplast and Di-and/or polyisocyanates. BDR Pat. 2,542,900 (1977)Google Scholar
  32. 32.
    Hoechst AG (Reic.): Polyurethane foams made from oxyalkylated novolac. BDR Pat. 1,745,317 (1977)Google Scholar
  33. 33.
    Kudzio, I.: Polyurethane foams modified by urethanes. Japan Pat. 5,365,396 (1976), 5,114,0564 (1978)Google Scholar
  34. 34.
    Anonymous: New ideas in rigid foams broaden insulation capabilities. Modern Plast. Intern. 8, 50 (1978)Google Scholar
  35. 35.
    Artyushina, A. A., Tyuzneva, O. B., Chistyakov, A. M.: New casting plastic foam. Plast. Massy 1976, No. 9, 61 (in Russian)Google Scholar
  36. 36.
    Gur'ev, V. V., Sinchillo, Yu. Ya., Shutov, F. A.: Interactions of components in combined phenol — urethane foams. Plast. Massy 1978, No. 5, 73 (in Russian)Google Scholar
  37. 37.
    Berlin, A. A. et al.: Plaste u. Kautschuk 25, 697 (1978)Google Scholar
  38. 38.
    Valgin, V. D., Murasciov, Yu. S.: Materie Plastiche Elastomeru 1974, 692Google Scholar
  39. 39.
    Valgin, V. D.: Modified phenolic foams. All-Union Conf. Gas-Filled Polymers. Vladimir/USSR, 1978 (in Russian)Google Scholar
  40. 40.
    Valgin, V. D., Novak, V. A.: Phenolic foams of the type Vilares. Plast. Massy 1974, No. 10, 44 (in Russian)Google Scholar
  41. 41.
    Frank, H. G. (Rütgerswerke AG): Verfahren zur Herstellung von Schaumstoffen aus Bituminosen. BDR Pat. 1,620,847 (1977)Google Scholar
  42. 42.
    Ownes-Cornig Fiber Glass Corp.: Frothed Molding Composition. US Pat. 4,005,036 (1977)Google Scholar
  43. 43.
    Rechner Luc.: Mousse de copolymer urée formophénolique à catalyseur faible. France Pat. 7,510,368 (1976)Google Scholar
  44. 44.
    Camp de Saint Gobain: Thermally Stable Phenolic Foams. BDR Pat. 1,923,719 (1976)Google Scholar
  45. 45.
    GAF Crp.: Insoluble Porous Complexes made from Crosslinked Nitrogen USA Pat. 3,914,187 (1976)Google Scholar
  46. 46.
    Kozlov, N. A., Shorokhov, V. B.: Modification of phenolic foams. All-Union Conference on Gas-Filled Polymers, Vladimir USSR, 1978 (in Russian)Google Scholar
  47. 47.
    Kozlov, N. A., Shorokhov, V. B.: Modified phenolic foams. Plast. Massy 1979, No. 7, 55 (in Russian)Google Scholar
  48. 48.
    Mackowski, R., Majewski, S., Ostowski, K.: Phenol-polystyrene plastic foams. Polim.-Tworz. Wielkoczasteczkowe 3, 107 (1978) (in Polish)Google Scholar
  49. 49.
    Pokrovsky, V. M. et al.: Plastic foams with additives. Stroitel'nye materialy i konstruktsii 1978, No. 1, 22 (in Russian)Google Scholar
  50. 50.
    Bayer AG: Polyurethane Foams Obtained from Polyisocyanate and Polyester Containing Aminoplast. British Pat. 1,506,341 (1978)Google Scholar
  51. 51.
    Mitsubishi Gas Chem. Ind.: Modified Urethane Foam Production. Japan Pat. 52,153,000 (1977)Google Scholar
  52. 52.
    Wagner, K. (Bayer AG): Verfahren zur Herstellung von Schaumstoffen. BDR Pat. 2,514,633 (1976)Google Scholar
  53. 53.
    Stern, G., Wegleituer, K. (Chemie Linz.): Verfahren zur Herstellung von Schaumkunststoffen. Österreich. Pat. 346,604 (1978)Google Scholar
  54. 54.
    Tokyo Rubber Ind.: Flame Retardant Acrylic Foames. Japan Pat. 7,017,876 (1977)Google Scholar
  55. 55.
    BASF AG: Magnetic Recording Elements Containing an Improved Polymeric Binder. BDR-Pat. 1,907,957 (1977)Google Scholar
  56. 56.
    Hubbard, D. A. (Imper. Chem. Ind.): Process for Producing Expanded Urea-Formaldehyde Products. British Pat. 1,463,063 (1977)Google Scholar
  57. 57.
    Baumann, H.: Preparation and Processing of Urea-Formaldehyde Foam Polymers. Jap. Plast. 10, 9, 13 (1976)Google Scholar
  58. 58.
    Balm Paints Ltd.: Amine Resins and Processes. US Pat. 4,007,142 (1977)Google Scholar
  59. 59.
    Matsushita Elect. Nor.: Foamable Flame Resistant. Japan Pat. 1,141,497 (1976)Google Scholar
  60. 60.
    Wilmsen, H.: Preparing of Flame Retardant Foamed Plastics. Swiss Pat. 588,456 (1976), 602,839 (1978)Google Scholar
  61. 61.
    Andreev, L. V., Khasanov, R. M., Prosvirin, A. A.: preparation of furan-urethane foams. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1978 (in Russian)Google Scholar
  62. 62.
    Seryakov, G. V., Sokolov, G. M., Voskresensky, V. A.: Casting epoxide-phenolic foam. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1978 (in Russian)Google Scholar
  63. 63.
    Schuur, G.: Plastica 31, 97 (1978)Google Scholar
  64. 64.
    Baumann, H.: Formaldehyde in UF-shuim. Plastica 30, 72 (1977)Google Scholar
  65. 65.
    Kozlov, K. V.: On the Determination of Coefficient of Uniformity in Foamed Plastics. Zavod. Lab. Nll. 1973, 1396 (in Russian)Google Scholar
  66. 66.
    Spektor, F. A., Shutov, F. A.: Microstructure of phenolic foams. In: Physics of building materials. Oborin, L. A. (ed.), pp. 11–14. Leningrad: Building Institute 1970. (in Russian)Google Scholar
  67. 67.
    Shutov, F. A.: New approach to the study of oligomeric foam properties. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1978 (in Russian)Google Scholar
  68. 68.
    Shutov, F. A., Chaikin, I. I.: Micro-and macrocellular structure of polyurethane foams. Proizvodstvo i Pererabotka Plasticheskikh Mass i Sinteticheskikh Smol 1979, No. 4, 14 (in Russian)Google Scholar
  69. 69.
    Shutov, F. A., Chaikin, I. I.: Electrical properties of polyurethane foams. All-Union Conference on Polyurethanes, Vladimir/USSR, 1979 (in Russian)Google Scholar
  70. 70.
    Shutov, F. A.: Problems of the physical chemistry of polyurethane foams, ibid.Google Scholar
  71. 71.
    Shutov, F. A., Chaikin, I. I.: Morphology of polyurethane foams. Fifth Internat. Conf. Cellular and Non-Cellular Urethanes, Strasburg 1980Google Scholar
  72. 72.
    Aleksandrov, A. Ya., Borodin, M. Ya., Pavlov, V. V.: Constructions with plastic foam fillers. Moscow, Mashinostroenie 1972 (in Russian)Google Scholar
  73. 73.
    Lowe, A. J. et al.: The phenol formaldehyde foams. 4./SPI Internat. Cellular Plastics Conf., Montreal, 1976Google Scholar
  74. 74.
    Rossmy, G. R. et al.: J. Cell. Plast. 13, 26 (1977)CrossRefGoogle Scholar
  75. 75.
    Oween, M. J., Denis, C.: J. Cell. Plast. 13, 264 (1977)CrossRefGoogle Scholar
  76. 76.
    Dubyaga, E. G., Tarakanov, O. G.: Khim. Prom. 8, 607 (1976)Google Scholar
  77. 77.
    Lemlich, R.: Ind. Eng. Chem. Fundam. 17, 89 (1978)CrossRefGoogle Scholar
  78. 78.
    Saunders, J. H., Frisch, K. C.: Polyurethanes. New York, London: Interscience, 1964Google Scholar
  79. 79.
    Schauver, A., Truxa, K., Spitzer, Z.: The study of structure of cellular materials. Stavebnicky Casopis 15, 245 (1967) (in Czech)Google Scholar
  80. 80.
    Salyer, I. O., Usmani, A. M.: J. Appl. Polym. Sci. 23, 381 (1979)CrossRefGoogle Scholar
  81. 81.
    Renner, A.: Kondensationspolymere aus Harnstoff und Formaldehyd mit großer spezifischer Oberfläche. Makromol. Chem. 149, 1 (1971)CrossRefGoogle Scholar
  82. 82.
    Kopshev, E. Yu., Shoshtaeva, M. V., Korotkov, L. I.: Effect of apparent density on flammability of rigid polyurethane foams. Plast. Massy 1979, No. 2, 51 (in Russian)Google Scholar
  83. 83.
    Salyer, I. O. et al.: J. Cell. Plast. 9, 25 (1973)CrossRefGoogle Scholar
  84. 84.
    Mendelson, M. A. et al.: J. Appl. Polym. Sci. 23, 325 (1979)CrossRefGoogle Scholar
  85. 85.
    Sarig, G., Little, R. W., Segerlind, L. J.: J. Appl. Polym. Sci. 22, 419 (1978)CrossRefGoogle Scholar
  86. 86.
    Menges, G., Knipschild, F.: Polym. Eng. Sci. 15, 623 (1975)CrossRefGoogle Scholar
  87. 87.
    Barma, P. et al.: Amer. Chem. Soc., Polym. Prepr. 19, 698 (1978)Google Scholar
  88. 88.
    Shutov, F. A., Chaikin, I. I.: Extreme character of sorptional water absorption by rigid polyurethane foams. Proizvodstvo i pererabotka plasticheskikh mass i sinteticheskikh smol 1979, No. 6, 17 (in Russian)Google Scholar
  89. 89.
    Gregg, S. J., Sing, K. S. W.: Adsorption surface area and porosity. London, New York: Academic Press 1967Google Scholar
  90. 90.
    Fedodeev, V. I.: Estimation of properties and state of water in large-pore disperse substances. Kolloid. Zh. 37, 520 (1975) (in Russian)Google Scholar
  91. 91.
    Hedlin, C. P.: J. Cell. Plast. 13, 313 (1977)CrossRefGoogle Scholar
  92. 92.
    Kirby, D.: Plast. Rubber Int. 3, 167 (1978)Google Scholar
  93. 93.
    Kudryacheva, G. M., Kozhevnikov, I. G.: Thermophysical characteristics of plastic foams at 90–360 K. Plast. Massy 1974, No. 5, 39 (in Russian)Google Scholar
  94. 94.
    Barnatt, A., Dyke, R., Hillier, K.: Plastica 32, 14 (1979)Google Scholar
  95. 95.
    Hingst, U.: Forsch. Ingenieur Wiss. 43, 185 (1977)CrossRefGoogle Scholar
  96. 96.
    Borodin, M. Ya.: Electrical properties of plastic foams. In: Plastic foams. Popov, V. A. (ed.), pp. 61–72. Moscow: Oborongiz 1959 (In Russian)Google Scholar
  97. 97.
    Kopatsky, N. A., Chaikin, I. I.: Theoretical formula for calculating dielectric permeability of plastic foams. All-Union Conf. Physics of Dielectrics, Leningrad USSR, 1973 (in Russian)Google Scholar
  98. 98.
    Brown, W. F.: Dielectrics. Berlin, Göttingen, Heidelberg: Springer 1956Google Scholar
  99. 99.
    Sazhin, B. I.: Electrical properties of polymers. Leningrad: Khimiya 1970 (in Russian)Google Scholar
  100. 100.
    Shutov, F. A., Platonov, M. P.: On the mechanism of dielectric losses of gas-filled polymers in connection with specific features of their macrostructure. All-Union Conf. Physics of Dielectrics, Leningrad 1973 (In Russian)Google Scholar
  101. 101.
    Klemper, D., Karasz, F. E.: J. Elastoplast. 4, 180 (1972)Google Scholar
  102. 102.
    Trostyanskaya, E. B., Chernikova, O. D.: Dielectric Properties of Phenolic and Epoxide Resins in Media with High Humidity. Plast. Massy 1976, No. 2, 64 (in Russian)Google Scholar
  103. 103.
    Warfield, R. W.: J. Appl. Polym. Sci. 19, 1205 (1975)CrossRefGoogle Scholar
  104. 104.
    Harwood, C., Wostenholm, G. H., Yates, B.: J. Polym. Sci. Phys. Ed. 16, 759 (1978)CrossRefGoogle Scholar
  105. 105.
    Manegold, E.: Schaum. Heidelberg: Straßenbau Chem. und Techn. Verlag, 1953Google Scholar
  106. 106.
    Kerner, E. H.: Proc. Phys. Soc. 59, 802 (1956)Google Scholar
  107. 107.
    Odelevsky, V. N.: Theory of generalized conduction of heterogeneous media. Zh. Tekh. Fiz. 21, 667 (1951) (in Russian)Google Scholar
  108. 108.
    Chistaykov, B. E., Chernina, V. N.: Electroconductivity of liquid foams. Kolloid. Z. 39, 1005 (1977) (in Russian)Google Scholar
  109. 109.
    Bikerman, J. J.: Foams. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  110. 110.
    Anonymous: Urethane foams in the TV Receiver. J. Cell. Plast. 13, 290 (1977)Google Scholar
  111. 111.
    Domkin, V. S.: Electrical properties of gas-filled polymers. All-Union Seminar on Plastic Foams, Leningrad USSR, 1975 (in Russian)Google Scholar
  112. 112.
    Palmer, P. J.: J. Cell. Plast. 9, 182 (1973)CrossRefGoogle Scholar
  113. 113.
    Kutschers, K., Zimmermann, P.: Langzeitdurchschlag in Polyurethan Schaumstoffe. Wiss.-Techn. Mitt. Inst, „Prüffeld Elek. Hochleistungstech.“ 18, 28 (1977)Google Scholar
  114. 114.
    Domkin, V. S.: Electrical properties of plastic foams and methods of estimation. In: Methods of physico-mechanical testing of plastic foams, pp. 48–53. Moscow: NIITEKhIM 1976, (in Russian)Google Scholar
  115. 115.
    Giessner, B. G.: Epoxy foam — a novel electrical insulation material. pp. 336–339. Proc. 13th Electrical/Electronics Insulation Conf., New York, 1977Google Scholar
  116. 116.
    Zorll, U.: Organische Beschichtungen zur Oberflächenreinhaltung. Ind.-Anz. 100, 30 (1978)Google Scholar
  117. 117.
    Toyo Rubber Chem.: Antistatic Polyurethane Foam Preparation. Japan Pat. 77,035,399 (1977)Google Scholar
  118. 118.
    Chaikin, I. I., Shutov, F. A.: Static electrization of polyurethane foams. All-Union Conf. Polyurethanes, Vladimir/USSR, 1979 (in Russian)Google Scholar
  119. 119.
    Shutov, F. A.: On the use of electrical insulation from phenolic foams in high humidity media. All-Union Seminar on Plastic Foams, Leningrad 1975 (in Russian)Google Scholar
  120. 120.
    Vanin, B. V.: Calculation of dielectric properties of disperse materials. Elektrichestvo 1965, 54 (in Russian)Google Scholar
  121. 121.
    Chaikin, I. I., Shutov, F. A.: Electroconductivity and static electrization of plastic foams. Proizvodstvo i pererabotka plasticheskikh mass i sinteticheskikh smol 1979, No. 7, 12 (in Russian)Google Scholar
  122. 122.
    Sokolov, V. A. et al.: Electrical Properties of Epoxide Foams. Plast. Massy 1977, No. 2, 68 (in Russian)Google Scholar
  123. 123.
    Durasova, T. F., Moiseev, A. A.: Electrical properties of plastic foams at various humidity. Plast. Massy 1971, No. 9, 19 (in Russian)Google Scholar
  124. 124.
    Bono, P., Gatland, C.: Frontiers of Space. New York: MacMillan Co. 1973Google Scholar
  125. 125.
    Larkins, C. D.: Southern Africa 7, 41 (1977)Google Scholar
  126. 126.
    Pokrovsky, L. I.: Production and use of foamed polymers. Plast. Massy 1978, No. 4, 68 (in Russian)Google Scholar
  127. 127.
    Kiya-Oglu, N. V., Tsokolaeva, N. M., Stanovskaya, E. R.: Trends in production and consumption of Plastic Foams. All-Union Conf. Polyurethanes, Vladimir/USSR, 1979 (in Russian)Google Scholar
  128. 128.
    Tarakanov, O. G.: Specific features of the physical chemistry and mechanics of polyurethane foams. All Union Conference on Polyurethanes, Vladimir/USSR, 1979 (in Russian)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Fyodor A. Shutov
    • 1
  1. 1.Physical DepartmentBuilding InstituteLeningradUSSR

Personalised recommendations