Advertisement

Reinforcement of rubber by carbon black

  • Zvi Rigbi
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 36)

Abstract

The behaviour of carbon black upon addition to elastomers to increase the strength, particularly the abrasion resistance and the tear strength, of the crosslinked product is reviewed. It is found that the overwhelmingly greater portion of all studies on carbon black/elastomer interactions deals with properties at extensions much lower than those obtaining at rupture. These are developed to show that the interactions are time- and temperature-dependent.

A theory is developed which makes it possible to explain the phenomena of stress softening, the increase of strength and other properties as a result of the use of carbon black, as well as the effect of temperature and strain-rate upon them.

Keywords

Carbon Black Natural Rubber Monomer Unit Abrasion Resistance Relaxation Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

23. References

  1. 1.
    Ban, L. L., Hess, W. M.: Current progress in the study of carbon black microstructure and general morphology. In: Renforcement des elastomères (J.-B. Donnet, ed.) p. 81, Paris: CNRS 1975Google Scholar
  2. 2.
    Ban, L. L., Hess, W. M., Papazian, L. A.: Rubber Chem. Technol. 47, 858 (1974)Google Scholar
  3. 3.
    Beebe, R. A. et al., quoted by Holmes, J. M. in (Flood, E. A., ed.): The solid-gas interface, Ch.5. New York: Dekker 1967. In particular, see Fig. 5–2 on p. 132Google Scholar
  4. 4.
    Blanchard, A. F.: J. Polym. Sci. Al, 8, 813, 835 (1970)CrossRefGoogle Scholar
  5. 5.
    Blanchard, A. F.: The immobilization of elastomers on filler surfaces. In: Renforcement des elastomères (J. B. Donnet, ed.) p. 41, Paris: CNRS 1975Google Scholar
  6. 6.
    Blanchard, A. F., Parkinson, D.: Ind. Eng. Chem. 44, 799 (1952)CrossRefGoogle Scholar
  7. 7.
    Boonstra, B. B., Taylor, G. L.: Rubber Chem. Technol. 38, 943 (1965)Google Scholar
  8. 8.
    Boonstra, B. B.: J. Appl. Polym. Sci. 11, 389 (1967)CrossRefGoogle Scholar
  9. 9.
    Boonstra, B. B., Medalia, A.: Rubber Age 92, 892 (1962)Google Scholar
  10. 10.
    Brennan, J. J., Jermyn, T. E., Boonstra, B. B.: J. Appl. Polym. Sci. 8, 2687 (1964)CrossRefGoogle Scholar
  11. 11.
    Brennan, J. J., Dannenberg, E. M., Rigbi, Z.: Some aspects of stress softening in reinforcement by carbon black. Proc Fifth Internat. Rubber Conf. Brighton/England, 1967, p. 123, London: Mclaren 1968Google Scholar
  12. 12.
    Brennan, J. J., Jermyn, T. E., Perdigao, M. F.: Influence of carbon black on stress softening (Mullins effect). Paper no. 36, Division of Rubber Chemistry, ACS, Detroit, Michigan, 1964Google Scholar
  13. 13.
    Buchan, S., Rae, W. D.: I.R.I. Trans. 21, 323 (1946)Google Scholar
  14. 14.
    Bueche, F.: J. Appl. Polym. Sci. 7, 1165 (1963)CrossRefGoogle Scholar
  15. 15.
    Bueche, A. M., White, A. V.: J. Appl. Phys. 27, 980 (1956)CrossRefGoogle Scholar
  16. 16.
    Chasset, R.: Relaxation viscoelastique de vulcanizats d'un copolymere butadiene-styrolene (SBR-1500) contenant differentes proportions d'un noir de carbone ISAF. In: Renforcement des elastomères. (J. B. Donnet, ed.) p. 193, Paris: CNRS 1975Google Scholar
  17. 17.
    Cotten, G. R., Boonstra, B. B.: J. Appl. Polym. Sci. 9, 3395 (1965)CrossRefGoogle Scholar
  18. 18.
    Cotten, G. R. et al.: Kautsch. Gummi-Kunst. 22, 477 (1969)Google Scholar
  19. 19.
    Dannenberg, E. M.: I.R.I. Trans. 22, T26 (1966)Google Scholar
  20. 20.
    Dannenberg, E. M., Brennan, J. J.: Rubber Chem. Technol. 39, 597 (1966)Google Scholar
  21. 21.
    Dijauw, L. K., Gent, A.: J. Polym. Sci. (Symposia) 48, 159 (1974)Google Scholar
  22. 22.
    Donnet, J. B., Voet, A.: Carbon black — physics, chemistry and elastomer reinforcement. New York: Dekker 1976Google Scholar
  23. 23.
    Donnet, J. B., Papirer, E., Vidal, A.: Nippon Gomu Kyokaishi 50, 223 (1977)Google Scholar
  24. 24.
    Ecker, R.: Rubber Chem. Technol. 39, 823 (1966)Google Scholar
  25. 25.
    Eirich, F. R.: Rubber reinforcement in perspective. In: Renforcement des elastomères. (J. B. Donnet, ed.) p. 1, Paris: CNRS 1975Google Scholar
  26. 26.
    Eyring, H., Eyring, E. M.: Modern chemical kinetics. Chapter on transport mechanics, New York: Reinhold 1963Google Scholar
  27. 27.
    Flory, J. P., Rehner, J.: J. Chem. Phys. 11, 512 (1943)CrossRefGoogle Scholar
  28. 28.
    Gent, A. N.: J. Appl. Polym. Sci. 18, 1397 (1974)CrossRefGoogle Scholar
  29. 29.
    Gessler, A. M.: Rubber Age 101, 54 (1969)Google Scholar
  30. 30.
    Glucklich, J., Landel, R. F.: J. Appl. Polym. Sci. 20, 121 (1976)CrossRefGoogle Scholar
  31. 31.
    Greensmith, H. W., Mullins, L., Thomas, A. G.: The strength of rubbers. In: Chemistry and physics of rubberlike substances (Bateman, L., ed.), p. 249, London: Maclaren 1963Google Scholar
  32. 32.
    Gregory, M. J., Metherell, C., Smith, J. F.: Plastics and Rubbers: Mater. Appl. 1978, 37Google Scholar
  33. 33.
    Gurney, W. A.: Trans. I.R.I. 21, 31 (1945)Google Scholar
  34. 34.
    Guth, E., Gold, O.: On the hydrodynamical theory of viscosity of suspensions (Abstract), Phys. Rev. 53, 322 (1953)Google Scholar
  35. 35.
    Halpin, J. C.: J. Appl. Phys. 35, 3133 (1964)CrossRefGoogle Scholar
  36. 36.
    Halpin, J. C.: Rubber Chem. Technol. 38, 1007 (1965)Google Scholar
  37. 37.
    Halpin, J. C., Bueche, F.: J. Appl. Phys., 35, 3142 (1964)CrossRefGoogle Scholar
  38. 38.
    Harwood, J. A. C.: J. Appl. Chem. 17, 533 (1967)Google Scholar
  39. 39.
    Harwood, J. A. C., Mullins, L., Payne, A. R.: J. Appl. Polym. Sci. 9, 3011 (1965)CrossRefGoogle Scholar
  40. 40.
    Harwood, J. A. C., Payne, A. R.: J. Appl. Polym. Sci. 10, 315 (1966)CrossRefGoogle Scholar
  41. 41.
    Hess, W. M.: Private communicationGoogle Scholar
  42. 42.
    Hess, W. M., Marsh, P. A.: Norelco Reporter 12, 1 (1965)Google Scholar
  43. 43.
    Hobden, J. F., Jellinek, H. H.: J. Polym. Sci. 11, 365 (1953)CrossRefGoogle Scholar
  44. 44.
    Houwink, R.: Rubber Chem. Technol. 28, 888 (1958)Google Scholar
  45. 45.
    Kamenskii, A. N. et al.: Mekh. Polimerov 3, 291 (1967), translated as: Electron microscope investigation of the type of fracture of filled rubbers. Polymer Mech. 2, 198 (1967)Google Scholar
  46. 46.
    Kaufman, S., Slichter, W. P., Davis, D. D.: J. Polym. Sci., (A 2)9, 829 (1971)Google Scholar
  47. 47.
    Knauss, W. G.: The time-dependent fracture of viscoelastic materials. In: Proc. Internat. Conf. Fracture, Sendai, Japan, 1965, 1139Google Scholar
  48. 48.
    Kolthof, I. M., Gutmacher, R. E., Kahn, A.: J. Phys. Chem., 55, 1240 (1951)CrossRefGoogle Scholar
  49. 49.
    Kruas, G. (ed.): Reinforcement of elastomers, New York, Wiley, 1965Google Scholar
  50. 50.
    Kraus, G.: Adv. Polym. Sci. 8, 155 (1971)CrossRefGoogle Scholar
  51. 51.
    Kraus, G.: Angew. Makromol. Chem. 60/61, 215 (1977)Google Scholar
  52. 52.
    Kraus, G., Dugone, L.: Ind. Eng. Chem. 47, 1809 (1955)CrossRefGoogle Scholar
  53. 53.
    Kraus, G., Childers, C. W., Rollman, K. W.: J. Appl. Polym. Sci. 18, 229 (1966)CrossRefGoogle Scholar
  54. 54.
    Kraus, G., Gruver, J. T.: Rubber Chem. Technol. 41, 1256 (1968)Google Scholar
  55. 55.
    Kuhn, W.: Kolloid-Z. 76, 258 (1936)CrossRefGoogle Scholar
  56. 56.
    Lake, G. J., Lindley, P. B., Thomas, A. G.: Fracture mechanics of rubber. In: Fracture 1969 (Pratt, P. L., ed.), London: Chapman and Hall 1969Google Scholar
  57. 57.
    Lambert, D. H.: Internal Report, Cabot Corp., Billerica, Mass.Google Scholar
  58. 58.
    Le Bras, J., Papirer, E.: J. Appl. Polym. Sci. 22, 525 (1978)CrossRefGoogle Scholar
  59. 59.
    Lezhnev, N. N. et al.: Dokl. Akad. Nauk. SSSR. 160, 861 (1965), translated as: Investigation of the properties of the structures of rubbers strengthened by interaction with carbon black, Doklady Phys. Chem. 161, 107 (1965)Google Scholar
  60. 60.
    Mason, P.: J. Appl. Phys. 29, 1146 (1958)CrossRefGoogle Scholar
  61. 61.
    Medalia, A. I.: Rubber Chem. Technol., 45, 1171 (1972)Google Scholar
  62. 62.
    Medalia, A. I.: J. Colloid Interface Sci. 32, 115 (1970)CrossRefGoogle Scholar
  63. 63.
    Medalia, A. I.: Rubber Chem. Technol. 51, 437 (1978)Google Scholar
  64. 64.
    Mullins, L., Tobin, N.: J. Appl. Polym. Sci. 9, 2993 (1965)CrossRefGoogle Scholar
  65. 65.
    O'Brien, J. et al.: Macromol. 9, 653 (1967)CrossRefGoogle Scholar
  66. 66.
    Oono, R., Ikeda, H., Todani, Y.: Angew. Makromol. Chem. 46, 47 (1971)Google Scholar
  67. 67.
    Papirer, E., Nguyen, V. T., Donnet, J.-B.: J. Polym. Sci. (Polym. Letters), in pressGoogle Scholar
  68. 68.
    Payne, A. R., Whittaker, R. E.: Importance of hysteresis in the reinforcement of elastomers. In: Renforcement des elastomères (Donnet, J.-B., ed.), p. 233, Paris: CNRS 1975Google Scholar
  69. 69.
    Peremsky, R.: Kauc. Plast. Hmoty 1963, 37Google Scholar
  70. 70.
    Pliskin, I., Tokita, N.: J. Appl. Polym. Sci. 16, 473 (1972)CrossRefGoogle Scholar
  71. 71.
    Rivin, D.: Rubber Chem. Technol. 44, 307 (1971)Google Scholar
  72. 72.
    Rivin, D., Aron, J., Medalia, A. I.: Rubber Chem. Technol. 41, 330 (1968)Google Scholar
  73. 73.
    Rivlin, R. S., Thomas, A. G.: J. Polym. Sci. 10, 291 (1953)CrossRefGoogle Scholar
  74. 74.
    Rigbi, Z.: J. Appl. Polym. Sci. 12, 2736 (1968)CrossRefGoogle Scholar
  75. 75.
    Rigbi, Z.: Kolloid Z. u. Z. Polymere 224, 46 (1968)CrossRefGoogle Scholar
  76. 76.
    Rigbi, Z.: ibid. 225, 40 (1968)CrossRefGoogle Scholar
  77. 77.
    Rigbi, Z.: ibid. 223, 127 (1968)CrossRefGoogle Scholar
  78. 78.
    Rigbi, Z.: Rev. Gen. Caoutch. Plast. 45, 625 (1968)Google Scholar
  79. 79.
    Rigbi, Z.: Bull. Res. Counc. Israel 6 C, 67 (1957)Google Scholar
  80. 80.
    Rehner, J.: The nature of polymer-filler attachmets. In: Reinforcement of elastomers (Kraus, G., ed.) New York: Wiley Interscience 1965Google Scholar
  81. 81.
    Sambrook, R. W.: J. Inst. Rubber. Ind. 1970, 210Google Scholar
  82. 82.
    Schoon, Th. G. F., Adler, K.: Kautsch. Gummi — Kunst. 19, 414 (1966)Google Scholar
  83. 83.
    Shallamach, A.: Wear 1, 384 (1958)CrossRefGoogle Scholar
  84. 84.
    Silberberg, A.: J. Phys. Chem. 66, 1872 (1962)CrossRefGoogle Scholar
  85. 85.
    Sircar, A. K., Voet, A.: Rubber Chem. Technol. 43, 973 (1970)Google Scholar
  86. 86.
    Smit, P. P. A.: Rheol. Acta 5, 277 (1966)CrossRefGoogle Scholar
  87. 87.
    Smith, T. L.: J. Polym. Sci. A1, 3597 (1963)Google Scholar
  88. 88.
    Smith, T. L.: J. Appl. Phys. 35, 27 (1964)CrossRefGoogle Scholar
  89. 89.
    Smith, T. L.: Strength and extensibility of elastomers. In: Rheology, Vol. 5 (Eirich, F. R., ed.), pp. 127–221, New York: Academic Press 1969Google Scholar
  90. 90.
    Studebaker, M. L.: Rubber Chem. Technol. 30, 1401 (1957)Google Scholar
  91. 91.
    Sukurai, M. et al.: Repts. Progr. Polym. Phys. Japan 8, 237 (1965)Google Scholar
  92. 92.
    Taylor, G. L.: Internal Report Cabot Corporation 1963 Google Scholar
  93. 93.
    Treloar, L. R. G.: The Physics of rubber elasticity, 2nd ed. Oxford: Oxford Univ. Press 1958Google Scholar
  94. 94.
    Ulmer, J. D., Hess, W. M., Chirico, V. E.: Rubber Chem. Technol. 47, 729 (1974)Google Scholar
  95. 95.
    Takayanagi, M., Minami, S., Uemura, S.: J. Polym. Sci. (Symposia), C5, 113 (1964)Google Scholar
  96. 96.
    van Ooij, W. J.: Rubber Chem. Technol. 51, 52 (1978)Google Scholar
  97. 97.
    Wake, W. C.: Surface mobility and adhesion. Renforcement des Elastomères (Donnet, J.-B., ed.), p. 277, Paris: CNRS 1975Google Scholar
  98. 98.
    Wall, F. T.: J. Chem. Phys. 11, 512 (1943)CrossRefGoogle Scholar
  99. 99.
    Westlinning, H.: Kautsch. Gummi-Kunst. 20, 5 (1967)Google Scholar
  100. 100.
    Williams, M. L., Landel, R. F., Ferry, J. D.: J. Amer. Chem. Soc. 77, 3701 (1955)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Zvi Rigbi
    • 1
  1. 1.Department of Chemical EngineeringTechnion Israel Institute of TechnologyHaifaIsrael

Personalised recommendations