Application of a technique of Franklin and Friedman to some problems in acoustics

  • D. C. Stickler
Classical Scattering Theory
Part of the Lecture Notes in Physics book series (LNP, volume 130)


Saddle Point Asymptotic Expansion Lateral Wave Head Wave High Transcendental Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Franklin, B. Friedman: “A convergent asymptotic representation for Laplace integrals,” Proc. Carob. Phil. Soc. 53, 612 (1957)Google Scholar
  2. [2]
    A. Erdélyi: Asymptotic Expansions (Dover, New York, 1956), pp. 29–34Google Scholar
  3. [3]
    See [21, pp. 49–50Google Scholar
  4. [4]
    D.C. Stickler: “Reflected and lateral waves for the Sommerfeld model,” J. Acoust. Soc. Am. 60, 1061 (1976)Google Scholar
  5. 0[5]
    A. Erdélyi et al.: Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2, p. 81Google Scholar
  6. 0[6]
    A. Erdélyi et al.: Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1, p. 248Google Scholar
  7. 0[7]
    N. Bleistein, R.A. Handelsman: Asymptotic Expansions of Integrals (Holt, Rinehart, and Winston, New York, 1975), pp. 380–385Google Scholar
  8. 0[8]
    C.L. Pekeris: in Propagation of Sound in the Ocean, Mem. Geo. Soc. Am. 27, 1 (1948)Google Scholar
  9. 0[9]
    L.B. Felsen, N. Marcuvitz: Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, New Jersey, 1973)Google Scholar
  10. [10]
    R.G. Newton: Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966), pp. 401–415Google Scholar
  11. [11]
    N. Marcuvitz: “On field representations in terms of leaky modes or eigenmodes,” IEEE Trans. AP-4, 192 (1956)Google Scholar
  12. [12]
    D.C. Stickler, E. Ammicht: “A uniform asymptotic evaluation of the continuous spectrum contribution for the Pekeris model,” submitted to the J. Acoust. Soc. Am.Google Scholar
  13. [13]
    D.C. Stickler: “Normal mode program with both the discrete and branch line contributions,” J. Acoust. Soc. Am. 57, 856 (1975)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • D. C. Stickler
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew York

Personalised recommendations