Advertisement

The role of surface waves in scattering processes of nuclear physics and acoustics

  • H. Überall
Classical Scattering Theory
Part of the Lecture Notes in Physics book series (LNP, volume 130)

Abstract

What classical and quantum physics have in common is that they deal with material objects, be they elastic bodies imbedded in a medium, atomic nuclei, or even elementary particles. Each of these target objects, when hit by an incident signal (a propagating wave, or a beam of particles), will be excited into eigenvibrations, and in its vibrating state will reemit waves or particles which will carry along with them information about the vibration properties of the target. We shall discuss here the mechanism by which the eigenvibrations are caused, demonstrating that the incident signal produces attenuated surface waves on the object which circumnavigate the latter repeatedly. If their wavelength is such that the surface waves match phases after each circumnavigation, then a standing surface wave is set up which represents the eigenvibration, and which causes peaks of finite width in the scattering amplitude when plotted as a function of frequency or energy, respectively.

Keywords

Surface Wave Phase Velocity Dispersion Curve Phase Match Giant Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Breit, E.P. Wigner: Phys. Rev. 49, 519 (1936)Google Scholar
  2. [2]
    H. Feshbach, D.C. Peaslee, V.F. Weisskopf: Phys. Rev. 71, 145 (1947)Google Scholar
  3. [3]
    L. Flax, L.R. Dragonette, H. Uberall: J. Acoust. Soc. Am. 63, 723 (1978)Google Scholar
  4. [4]
    K.J. Diercks, R. Hickling: J. Acoust. Soc. Am. 41, 380 (1967)Google Scholar
  5. [5]
    W.G. Neubauer, R.H. Vogt, L.R. Dragonette: J. Acoust. Soc. Am. 55, 1123 (1974)Google Scholar
  6. [6]
    L.R. Dragonette: Thesis, Catholic University, (1978) and Naval Research Laboratory Report 8216, (September, 1978); J. Acoust. Am. 65, 1570 (1979)Google Scholar
  7. [7]
    H. Uberall, L.R. Dragonette, L. Flax: J. Acoust. Soc. Am. 61, 711 (1977)Google Scholar
  8. [8]
    J.D. Murphy, E.D. Breitenbach, H. Uberall: J. Acoust. Soc. Am. 64, 677 (1978)Google Scholar
  9. [9]
    J.D. Murphy, J. George, H. Uberall: J. Wave Motion 1, 141 (1979)Google Scholar
  10. [10]
    J.D. Murphy, J. George, A. Nagl, H. Uberall: J. Acoust. Soc. Am. 65, 368 (1979)Google Scholar
  11. [11]
    K.A. Sage, J. George, H. Uberall: J. Acoust. Soc. Am. 65, 1413 (1979)Google Scholar
  12. [12]
    H. Uberall, J. George, A.R. Farhan, G. Mezzorani, A. Nagl, K.A. Sage: J. Acoust. Soc. Am., in pressGoogle Scholar
  13. [13]
    G. Gaunaurd, K.P. Scharnhorst, H. Uberall: J. Acoust. Soc. Am. 65, 573 (1979)Google Scholar
  14. [14]
    R. Fiorito, H. Uberall: J. Acoust. Soc. Am. 65, 9 (1979)Google Scholar
  15. [15]
    R. Fiorito, W. Madigosky, H. Uberall: J..Acoust. Soc. Am., submitted (1979)Google Scholar
  16. [16]
    A.J. Haug, S.G. Solomon, H. Oberall: J. Sound Vib. 57, 51 (1978)Google Scholar
  17. [17]
    G.C. Gaunaurd, H. Uberall: J. Acoust. Soc. Am. 63, 1699 (1978)Google Scholar
  18. [18]
    G.C. Gaunaurd, K.P. Scharnhorst, H. Uberall: J. Acoust. Soc. Am. 64, 1211 (1978)Google Scholar
  19. [19]
    G.C. Gaunaurd, H. Uberall: J. Appl. Phys., in pressGoogle Scholar
  20. [20]
    D. Brill, G.C. Gaunaurd, H. Uberall: J. Acoust. Soc. Am., submitted (1979)Google Scholar
  21. [21]
    G.C. Gaunaurd, H. Überall: Science, in pressGoogle Scholar
  22. [22]
    G.C. Gaunaurd, H. Oberall: J. Appl. Mech., to be publishedGoogle Scholar
  23. [23]
    G.C. Gaunaurd, H. Uberall: Appl. Phys., submitted (1979)Google Scholar
  24. [24]
    L. Flax, H. Überall: J. Acoust. Soc. Am., submitted (1979)Google Scholar
  25. [25]
    E. Tanglis, G. Gaunaurd, H. Uberall: J. Acoust. Soc. Am., submitted (1979)Google Scholar
  26. [26]
    F.E. Bertrand: Annu. Rev. Nucl. Sci. 26, 457 (1976)Google Scholar
  27. [27]
    M. Goldhaber, E. Teller: Phys. Rev. 74, 1046 (1948)Google Scholar
  28. [28]
    A.R. Farhan, J. George, and H. Oberall: Nucl. Phys. A305, 189 (1978)Google Scholar
  29. [29]
    K.W. McVoy: Phys. Rev. C3, 1104 (1971)Google Scholar
  30. [30]
    V.A. Matveev: “Hydrodynamic model of collective resonances in hadronic matter,” Fermi National Accelerator Laboratory preprint FERMILAB-pub-76/52-THY (June, 1976); B. Schrempp, F. Schrempp: “Strong interactions-a tunneling phenomenon,” CERN preprint Ref. TH 2573-CERN (September, 1978)Google Scholar
  31. [31]
    R. Raphael, H. Uberall, C. Werntz: Phys. Rev. 152, 899 (1966)Google Scholar
  32. [32]
    H. Uberall: Phys. Rev. B137, 502 (1965); Nuovo Cimento 41, 25 (1966)Google Scholar
  33. [33]
    A. Goldmann, M. Stroetzel: Phys. Lett. 31B, 287 (1970)Google Scholar
  34. [34]
    H. Uberall: Electron Scattering from Complex Nuclei (Academic, New York, 1971).Google Scholar
  35. [35]
    R.G. Satchler: Nucl. Phys. A195, 1 (1972)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • H. Überall
    • 1
  1. 1.Department of PhysicsCatholic UniversityWashington, DC

Personalised recommendations