Advertisement

Solitons, solutions of nonlinear evolution equations, and the inverse scattering transform

  • M. J. Ablowitz
Inverse Scattering Theory and Related Topics
Part of the Lecture Notes in Physics book series (LNP, volume 130)

Keywords

Soliton Solution Rational Solution Inverse Scattering Nonlinear Evolution Equation Toda Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.J. Ablowitz: Stud. Appl. Math., 58, 17 (1978)Google Scholar
  2. [2]
    V.E. Zakharov, A.B. Shabat: Functional Anal. Appl. 8, 226 (1974)Google Scholar
  3. [3]
    H. Cornille: “Solutions of the nonlinear three-wave equations in three spatial dimensions,” preprint, 1978, to be published in Phys. Lett; D.J. Kaup: “A method to solve the initial value problem of the three-wave equations in three dimensions,” preprint (1978)Google Scholar
  4. [4]
    M.J. Ablowitz, A. Ramani, H. Segur: Lett. Nuovo Cimento, 23, 333, 1978; M.J. Ablowitz, A. Ramani, H. Segur: “A connection between nonlinear evolution equations and ordinary differential equations of Painlevé type I,” preprint; M.J. Ablowitz, A. Ramani, H. Segur: “A connection between nonlinear evolution equations and ordinary differential equations of Painlevé type II,” preprintGoogle Scholar
  5. [5]
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura: Phys. Rev. Lett. 19, 1095 (1967); C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura: Comm. Pure Appl. Math. 27, 97 (1974)Google Scholar
  6. [6]
    D.J. Korteweg, G. DeVries: Phil. Mag. 39, 422 (1895)Google Scholar
  7. [7]
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur: Stud. Appl. Math. 53, 249 (1974)Google Scholar
  8. [8]
    N.J. Zabusky, M.D. Kruskal: Phys. Rev. Lett. 15, 240 (1965)Google Scholar
  9. [9]
    V.E. Zakharov, A.B. Shabat: Sov. Phys.-JETP 34, 62 (1972)Google Scholar
  10. [10]
    P.D. Lax: Comm. Pure Appl. Math. 21, 467 (1968)Google Scholar
  11. [11]
    L. Faddeev: J. Math. Phys. 4, 72 (1963)Google Scholar
  12. [12]
    P. Deift, E. Trubowitz: “Inverse scattering on the line,” Comm. Pure Appl. Math. 32, 121 (1979)Google Scholar
  13. [13]
    I. Kay, H.E. Moses: J. Appl. Phys. 27, 1503 (1956)Google Scholar
  14. [14]
    R. Hirota: Phys. Rev. Lett. 27, 1192 (1971)Google Scholar
  15. [15]
    R.M. Miura: J. Math. Phys. 9, 1202 (1968)Google Scholar
  16. [16]
    M.J. Ablowitz, H. Segur: Stud. Appl. Math. 57, 13 (1977)Google Scholar
  17. [17]
    H. Chen: Phys. Rev. Lett. 33, 925 (1974)Google Scholar
  18. [18]
    V.E. Zakharov, L.D. Faddeev: Functional Anal. Appl. 5, 10 (1971)Google Scholar
  19. [19]
    B.A. Dubrovin, V.B. Matveev, S.P. Novikov, Russian Math. Surveys 31, 59 (1976); E. Trubowitz, H. McKean: to be publishedGoogle Scholar
  20. [20]
    H. Cornille, J. Math. Phys. 17, 2143, (1976)Google Scholar
  21. [21]
    H. Airault, H.P. McKean, J. Moser: Comm. Pure Appl. Math. 30, 1 (1977)Google Scholar
  22. [22]
    M. Adler, J. Moser: Commun. Math. Phys. 61, 1 (1978)Google Scholar
  23. [23]
    M.J. Ablowitz, J. Satsuma: J. Math. Phys. 19, 2180 (1978)Google Scholar
  24. [24]
    M.J. Ablowitz, H. Cornille: “On solutions of the Korteweg-de Vries equation,” preprint (1979), to be published in Phys. Lett.Google Scholar
  25. [25]
    S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, V.B. Matveev: Phys. Lett. A 63, 205 (1977).Google Scholar
  26. [26]
    J. Satsuma, M.J. Ablowitz: J. Math. Phys. 20, 1496 (1979)Google Scholar
  27. [27]
    E.L. Ince: Ordinary Differential Equations (Dover, New York, 1944)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. J. Ablowitz
    • 1
  1. 1.Department of MathematicsClarkson College of TechnologyPotsdam

Personalised recommendations