Advertisement

Curved-space scattering

  • Jeffrey M. Cohen
  • Michael W. Kearney
  • Lawrence S. Kegeles
Quantum-Mechanical Scattering Theory
Part of the Lecture Notes in Physics book series (LNP, volume 130)

Abstract

Problems involving curvilinear coordinates and accelerating reference frames can be treated using powerful methods applicable to Maxwell's equations in curved space. A method developed by Cohen and Kegeles reduces the curved-space problem to that of solving a single complex linear scalar wave equation. Gravitational perturbations and neutrino fields can be treated using the same curved-space method. When applied to curved-space scattering problems, the method yields results in a straightforward manner.

Keywords

Maxwell Equation Curve Space Maxwell Field Tensor Notation Gauge Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes and References

  1. [1]
    G.F.R. Ellis: J. Math. Phys. 8, 1171 (1967)Google Scholar
  2. [2]
    J. Wainwright: Commun. Math. Phys. 17, 42 (1970)Google Scholar
  3. [3]
    J.N. Goldberg, R.K. Sachs: Acta Physica Polonica 22, 13 (1962)Google Scholar
  4. [4]
    E. Newman, R. Penrose: J. Math. Phys. 3, 566 (1962)Google Scholar
  5. [5]
    W. Kundt, A.H. Thompson: C.R. Acad. Sci. (Paris) 254, 4257 (1962); I. Robinson, A. Schild: J. Math. Phys. 4, 484 (1962)Google Scholar
  6. [6]
    A.Z. Petrov: Sci. Not. Kazan State Univ. 114, 55 (1954)Google Scholar
  7. [7]
    J. M. Cohen, L.S. Kegeles: Phys. Rev. D 10, 1070 (1974); Phys. Lett. 47A, 261 (1974)Google Scholar
  8. [8]
    A. Nisbet: Proc. Roy. Soc. (London) A231, 250 (1955)Google Scholar
  9. [9]
    H. Hertz: Ann. Phys. (Leipz.) 36, 1 (1889)Google Scholar
  10. [10]
    O. Laporte, G.E. Uhlenbeck: Phys. Rev. 37, 1380 (1931)Google Scholar
  11. [11]
    P. Debye: Ann. Phys. (Leipz.) 30, 57 (1909)Google Scholar
  12. [12]
    W.K.H. Panofsky, M. Phillips: Classical Electricity and Magnetism (Addison-Wesley, Cambridge, Massachusetts, 1955), Chap. 13Google Scholar
  13. [13]
    J.L. Synge: Relativity: The Special Theory (North-Holland, Amsterdam, 1965), 2nd ed., p. 335Google Scholar
  14. [14]
    J. M. Cohen, L.S. Kegeles: Phys. Lett. 54A, 5 (1975); Phys. Rev. D 19, 1641 (1979)Google Scholar
  15. [15]
    E. Cartan: Les Systémes Diffrentiels extérieurs et leurs applications géométriques, Exposés de Géometrie 14 (Hermann, Paris, 1945)Google Scholar
  16. [16]
    W.V.D. Hodge: The Theory and Applications of Harmonic Integrals (Cambridge, 1952)Google Scholar
  17. [17]
    G. de Rham: Varietés differentiables (Hermann, Paris, 1960)Google Scholar
  18. [18]
    H. Flanders: Differential Forms with Applications to the Physical Sciences (Academic, New York, 1963)Google Scholar
  19. [19]
    C.W. Misner and J.A. Wheeler: Ann. Phys. N.Y. 2, 525 (1957)Google Scholar
  20. [20]
    D.R. Brill, J.M. Cohen: J. Math. Phys. 7, 238 (1966)Google Scholar
  21. [21]
    M.W. Kearney, L.S Kegeles, J.M. Cohen: Astrophys. and Space Sci. 56, 129 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Jeffrey M. Cohen
    • 1
  • Michael W. Kearney
    • 1
  • Lawrence S. Kegeles
    • 2
  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphia
  2. 2.Department of PhysicsStevens Institute of TechnologyHoboken

Personalised recommendations