Canonical scattering theory for relativistic particles

  • F. Coester
Quantum-Mechanical Scattering Theory
Part of the Lecture Notes in Physics book series (LNP, volume 130)


A multichannel relativistic scattering theory can be formulated in a manner similar to the nonrelativistic multichannel theory. The mass operator plays the role of the Hamiltonian of the nonrelativistic theory. The problems of existence and completeness of wave operators are formally the same. Poincaré invariance and cluster separability of the S operator impose nontrivial restrictions. The purpose of this paper is to review the known solutions for the case where the number of constituent particles is bounded and explicit representations for the physical one-particle states exist.


Identification Operator Wave Operator Mass Operator Nonrelativistic Theory Asymptotic Completeness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. [1]
    H. Ekstein: Phys. Rev. 101, 880 (1956)Google Scholar
  2. [2]
    R. Haag: Phys. Rev. 112, 669 (1958)Google Scholar
  3. [3]
    F. Coester: Helv. Phys. Acta 38, 7 (1965)Google Scholar
  4. [4]
    T. Kato: J. Functional Anal. 1, 342 (1967)Google Scholar
  5. [5]
    M. Reed and B. Simon: Methods of Modern Mathematical Physics, (Academic, New York, 1979), Vol. III, Sec. XI.3Google Scholar
  6. [6]
    I. M. Sigal: “Scattering theory for many-particle systems”, preprintGoogle Scholar
  7. [7]
    C. Chandler and A. G. Gibson: proceedings of this conferenceGoogle Scholar
  8. [8]
    See [5], p. 321Google Scholar
  9. [9]
    M. H. L. Pryce: Proc. Roy. Soc. A195, 62 (1949), definition (e); T. D. Newton, E. P. Wigner: Revs. Mod. Phys. 21, 400 (1949)Google Scholar
  10. [10]
    S. N. Sokolov: Dokl Akad. Nauk. SSSR 233, 575 (1977)Google Scholar
  11. [11]
    U. Mutze: J. Math. Phys. 19, 231 (1978)Google Scholar
  12. [12]
    T. Kato: Perturbation Theory for Linear Operators (Springer, New York, 1966), Theorem 3.7, p. 533Google Scholar
  13. [13]
    Vol. I, Theorem I.11Google Scholar
  14. [14]
    S. N. Sokolov: Teor. Mat. Fiz. 24, 236 (1975)Google Scholar
  15. [15]
    B. de Dormale: J. Math. Phys. 20, 1229 (1979)Google Scholar
  16. [16]
    J. Schwinger: Phys. Rev. 127, 324 (1962)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • F. Coester
    • 1
  1. 1.Argonne National Laboratory ArgonneIllinois

Personalised recommendations