Advertisement

Scattering from point interactions

  • Lawrence E. Thomas
Quantum-Mechanical Scattering Theory
Part of the Lecture Notes in Physics book series (LNP, volume 130)

Keywords

Point Interaction Impose Boundary Condition Schr6dinger Operator Simple Esti Collision Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Breit: Phys. Rev. 71 (1947), 215; J.M. Blatt, V.F. Weisskopf. Theoretical Nuclear Physics (Wiley, New York, 1952), p. 74; L.H. Thomas: Phys. Rev. 47, 903 (1935)Google Scholar
  2. [2]
    K. Huang, C.N. Yang: Phys. Rev. 105, 767 (1957); K. Huang, C.N. Yang, J.M. Luttinger: Phys. Rev. 105, 767 (1957); T.D. Lee, K. Huang, C.N. Yang: Phys. Rev. 106, 1134 (1957); T.T. Wu, Phys. Rev. 115, 1390 (1959); K. Huang, Statistical Mechanics, (Wiley, New York, 1963), p. 409Google Scholar
  3. [3]
    G. S. Danilov: Sov. Phys.—JETP 13, 349 (1961); L.D. Faddeev, R.A. Minlos: Sov. Phys.—JETP 14, 1315 (1962)Google Scholar
  4. [4]
    G. Flamand: In Cargèse Lectures in Theoretical Physics, ed. by F. Lurçat (Gordon and Breach, New York, 1965), p. 247Google Scholar
  5. [5]
    C.N. Friedman: J. Functional Anal. 10, 346 (1972); A. Alonso y Coria, “Shrinking potentials in the Schrodinger Equation,” thesis, Princeton University (1978); E. Nelson, Bull. Amer. Math. Soc. 83, 1165 (1977)Google Scholar
  6. [6]
    L.E. Thomas: to appear in J. Math. Phys. (1979)Google Scholar
  7. [7]
    J. Dimock: Commun. Math. Phys. 57, 51 (1977)Google Scholar
  8. [8]
    J. Kupsch, W. Sandhas: Commun. Math Phys. 2, 147 (1966) *** DIRECT SUPPORT *** A3418088 00007Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Lawrence E. Thomas
    • 1
  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations