Advertisement

A two-Hilbert-space formulation of multi-channel scattering theory

  • Colston Chandler
  • A. G. Gibson
Quantum-Mechanical Scattering Theory
Part of the Lecture Notes in Physics book series (LNP, volume 130)

Keywords

Projection Operator Wave Operator Identical Particle Cluster Subspace Functional Anal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.O. Alt, P. Grassberger, W. Sandhas: Nucl. Phys. B2, 167 (1967)Google Scholar
  2. [2]
    W.O. Amrein, J.M. Jauch, K.B. Sinha: Scattering Theory in Quantum Mechanics (Benjamin, Reading, Massachusetts, 1977)Google Scholar
  3. [3]
    A.L. Belopol'skii, M. S. Birman: Math. USSR Izv. 2, 1117 (1968)Google Scholar
  4. [4]
    Gy. Bencze: Nucl. Phys. A210, 568 (1973)Google Scholar
  5. [5]
    Gy. Bencze: Phys. Lett. 72B, 155 (1977)Google Scholar
  6. [6]
    Gy. Bencze: Lett. Nuovo Cimento 17, 91 (1976)Google Scholar
  7. [7]
    Gy. Bencze, G. Cattapan, V. Vanzani: Lett. Nuovo Cimento 20, 248 (1977)Google Scholar
  8. [8]
    Gy. Bencze, C. Chandler: “On time dependent scattering theory for identical particles,” RIP Budapest, preprint KFKI-1979-14 (1979)Google Scholar
  9. [9]
    F.A. Berezin: Soviet Math. Dokl. 6, 997 (1965)Google Scholar
  10. [10]
    G. Cattapan, V. Vanzani: Nuovo Cimento 41A, 553 (1977)Google Scholar
  11. [11]
    C. Chandler, A.G. Gibson: J. Math, Phys. 14, 1328 (1973)Google Scholar
  12. [12]
    C. Chandler, A.G. Gibson: J. Math. Phys. 18, 2336 (1977)Google Scholar
  13. [13]
    C. Chandler, A.G. Gibson: J. Math. Phys. 19, 1610 (1978)Google Scholar
  14. [14]
    C. Chandler, A.G. Gibson: in Atomic Scattering Theory, Mathematical and Computational Aspects, ed. by J. Nuttall (University of Western Ontario, London, Canada, 1978), p. 189Google Scholar
  15. [15]
    C. Chandler, A.G. Gibson: in Few Body Systems and Nuclear Forces I, ed. by H. Zingl et al., Lecture Notes in Physics, Vol. 82 (Springer, New York, 1978), p. 356Google Scholar
  16. [16]
    F. Coester: Helv. Phys. Acta 38, 7 (1965)Google Scholar
  17. [17]
    F. Coester, L. Schlessinger: Ann. Phys. (N.Y.) 78, 90 (1973)Google Scholar
  18. [18]
    F. Coester: “Canonical scattering theory of relativistic particles,” these proceedingsGoogle Scholar
  19. [19]
    J.M. Combes: Nuovo Cimento A64, 111 (1969)Google Scholar
  20. [20]
    P. Deift: Ph.D. thesis, Princeton University (1976)Google Scholar
  21. [21]
    J.D. Dollard: Rocky Mt. J. Math. 1, 5 (1971)Google Scholar
  22. [22]
    J.D. Dollard: J. Math Phys. 5, 729 (1964)Google Scholar
  23. [23]
    H. Ekstein: Phys. Rev. 101, 880 (1956)Google Scholar
  24. [24]
    D.E. Eyre, T.A. Osborn: “Cluster expansions of the three-body problem,” University of Manitoba preprint (1979)Google Scholar
  25. [25]
    L.D. Faddeev: in The Three-Body Problem, ed. by J.S.C. McKee, P. M. Rolph, (North-Holland, Amsterdam, 1970), p. 154Google Scholar
  26. [26]
    L.D. Faddeev: Mathematical Aspects of the Three-Body Problem in Quantum Scattering Theory (Israel Program for Scientific Translations, Jerusalem, 1965)Google Scholar
  27. [27]
    J. Ginibre, M. Moulin: Ann. Inst. Henri Poincaré 21, 97 (1974)Google Scholar
  28. [28]
    R. Goldflam, K.L. Kowalski, W. Tobocman: “Partition permuting array approach to few-body Hamiltonian models of nuclear reactions,” Case Western Reserve University preprint (1979)Google Scholar
  29. [29]
    P. Grassberger, W. Sandhas: Nucl. Phys. B2, 181 (1967)Google Scholar
  30. [30]
    K. Gustafson, in Operator Algebras, Ideals, and Their Applications in Theoretical Physics, ed. by H. Baumgärtel et al. (Teubner-Texte, Leipzig, 1978), p. 335Google Scholar
  31. [31]
    G.A. Hagedorn: Ph. D. thesis, Princeton University (1978)Google Scholar
  32. [32]
    J. S. Howland: J. Functional Anal. 22, 250 (1976)Google Scholar
  33. [33.
    W. Hunziker, in Lectures in Theoretical Physics, ed. by A.O. Barut, W.E. Britten (Gordon and Breach, New York, 1968), Vol. X–AGoogle Scholar
  34. [34]
    W. Hunziker: Helv. Phys. Acta 40, 1052 (1967)Google Scholar
  35. [35]
    J.M. Jauch: Helv. Phys. Acta 31, 127, 661 (1958)Google Scholar
  36. [36]
    B.R. Karlsson, E. M. Zeiger: Phys. Rev. D 11, 939 (1975);,D 16, 2553 (1977)Google Scholar
  37. [37]
    T. Kato: Perturbation Theory for Linear Operators, (Springer, New York, 1976), 2nd ed.Google Scholar
  38. [38]
    T. Kato: J. Functional Anal. 1, 342 (1967)Google Scholar
  39. [39]
    D.J. Kouri, F. S. Levin: Nucl. Phys. A250, 127 (1975)Google Scholar
  40. [40]
    H. Krüger, F. S. Levin: Phys. Lett. 65B, 109 (1976)Google Scholar
  41. [41]
    S.P. Merkuriev: Sov. J. Nucl. Phys. 24, 150 (1976)Google Scholar
  42. [42]
    S.P. Merkuriev: Theoret. Math. Phys. 32, 680 (1977)Google Scholar
  43. [43]
    S.P. Merkuriev: Teoret. Mat. Fiz. 38, 201 (1979); Lett. Math. Phys. 3, 141 (1979)Google Scholar
  44. [44]
    I.M. Narodetskii, O.A. Yakubovskii: Sov. J. Nucl. Phys. 14, 178 (1972)Google Scholar
  45. [45]
    T.A. Osborn, K.L. Kowalski: Ann. Phys. (N. Y.) 68, 36 (1971)Google Scholar
  46. [46]
    D.B. Pearson: J. Functional Anal. 28, 182 (1978)Google Scholar
  47. [47]
    W.V. Petryshyn: Bull. Am. Math. Soc. 81, 223 (1975); Proc. Sympos. Pure Math. 18, part 1 (Am. Math. Soc., Providence, Rhode Island, 1970), p. 206Google Scholar
  48. [48]
    W.N. Polyzou, E.F. Redish: Ann. Phys. (N.Y.), 119, 1 (1979)Google Scholar
  49. [49]
    E.F. Redish: Nucl. Phys. A225, 16 (1974)Google Scholar
  50. [50]
    M. Reed, B. Simon: Methods of Modern Mathematical Physics, Vol. III (Academic, New York, 1979)Google Scholar
  51. [51]
    I.M. Sigal: Comm. Math. Phys. 48, 137 (1976)Google Scholar
  52. [52]
    B. Simon: Comm. Math. Phys. 55, 259 (1977)Google Scholar
  53. [53]
    I.H. Sloan: Phys. Rev. C 6, 1945 (1972)Google Scholar
  54. [54]
    W. Tobocman: Phys. Rev. C 11, 43 (1975)Google Scholar
  55. [55]
    T.G. Trucano: Ph. D. thesis, University of New Mexico, in progressGoogle Scholar
  56. [56]
    C. van Winter: Mat. Fys. Skr. Dan. Vid. Selsk. 2, 1 (1964)Google Scholar
  57. [57]
    V. Vanzani: in Few-Body Nuclear Physics (IAEA, Vienna, 1978), p. 57Google Scholar
  58. [58]
    S. Weinberg: Phys. Rev. 133, B232 (1964)Google Scholar
  59. [59]
    C.H. Wilcox: J. Functional Anal. 12, 257 (1973)Google Scholar
  60. [60]
    O.A. Yakubovskii: Sov. J. Nucl. Phys. 5, 937 (1967)Google Scholar
  61. [61]
    W.W. Zachary: J. Math. Phys. 10, 1098 (1969)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Colston Chandler
    • 1
  • A. G. Gibson
    • 2
  1. 1.Department of Physics and AstronomyUniversity of New NexicoNew Mexico
  2. 2.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSAA

Personalised recommendations