Green and lanford revisited

  • John D. Dollard
  • Brian Bourgeois
Quantum-Mechanical Scattering Theory
Part of the Lecture Notes in Physics book series (LNP, volume 130)


Asymptotic Form Schr6dinger Equation Asymptotic Completeness Radial Potential Radial Schr6dinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Bourgeois: “Quantum mechanical scattering theory for long-range oscillatory potentials,” Ph.D. thesis, University of Texas at Austin (Spring, 1979). Results to be published in Ann. Phys. (N.Y.)Google Scholar
  2. [2]
    A. Devinatz, M. Ben-Artzi: J. Math. Phys. 20, 594 (1979)Google Scholar
  3. [3]
    J. Dollard, C. Friedman: Ann. Phys. (N.Y.) 111, 251 (1978)Google Scholar
  4. [4]
    J. Dollard, C. Friedman: J. Math. Phys. 18, 1598 (1977)Google Scholar
  5. [5]
    T. A. Green, O. E. Lanford, III: J. Math. Phys. 1, 139 (1960)Google Scholar
  6. [6]
    T. Ikebe: Arch. Rational Mech. Anal. 5, 1 (1960)Google Scholar
  7. [7]
    T. Kato: Trans. Am. Math. Soc. 70, 195 (1951)Google Scholar
  8. [8]
    S. T. Kuroda: J. Math. Phys. 3, 933 (1962)Google Scholar
  9. [9]
    B. Simon: Comm. Pure Appl. Math. 22, 531 (1969)Google Scholar
  10. [10]
    B. Simon: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms (Princeton University Press, Princeton, New Jersey, 1971)Google Scholar
  11. [11]
    B. Simon: Trace Ideals and their Applications, London Mathematical Society Lecture Note Series, Vol. 35 (Cambridge University Press, Cambridge, 1979)Google Scholar
  12. [12]
    J. von Neumann, E. P. Wigner: Phys. Z. 30, 465 (1929)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • John D. Dollard
    • 1
  • Brian Bourgeois
    • 1
  1. 1.Mathematics DepartmentUniversity of TexasAustinUSA

Personalised recommendations