Advertisement

Decision procedures for some fragments of set theory

  • A. Ferro
  • E. G. Omodeo
  • J. T. Schwartz
Wednesday Morning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 87)

Keywords

Logical Consequence Decision Procedure Atomic Formula Logical Connective Courant Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Behmann, H., Beiträge zur Algebra der Logik insbesondere zum Entscheidungsproblem, Math. Annalen 86 (1922) 163–220.CrossRefGoogle Scholar
  2. [2]
    Davis, M., Putnam, H., A computing procedure for quantification theory, J. ACM 7 (1960) 201–215.CrossRefGoogle Scholar
  3. [3]
    Ferro, A., Omodeo, E. G., Schwartz, J. T., Decision procedures for elementary sublanguages of set theory. I. Multilevel syllogistic and some extensions, Comm. Pure Appl. Math. (to appear).Google Scholar
  4. [4]
    Łukasiewicz, J., Aristotle's Syllogistic, Clarendon Press, 1952.Google Scholar
  5. [5]
    Nelson, C. G., Oppen, D. C., A simplifier based on efficient decision algorithms, Fifth Ann. Symp. on Principles of Programming Languages (1978) 141–150.Google Scholar
  6. [6]
    Oppen, D. C., Complexity of combinations of quantifier-free procedures, Workshop on Automatic Deduction, Austin, Texas (1979).Google Scholar
  7. [7]
    Pratt, V. R., On specifying verifiers, (to appear).Google Scholar
  8. [8]
    Presburger, M., Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes-rendus du premier Congrès des mathématiciens des Pays Slaves, Warsaw (1929), 92–101.Google Scholar
  9. [9]
    Quine, W.V.O. Methods of Logic, Henry Holt & Co., New York, 1950.Google Scholar
  10. [10]
    Schwartz, J. T., Instantiation and decision procedures for certain classes of quantified set-theoretic formulae. Inst. for Computer Applic. in Science and Engr., NASA Langley Research Center, Hampton, Virginia, Report Number 7810 (1978).Google Scholar
  11. [11]
    Schwartz, J. T., A survey of program proof technology, Courant Institute, Comp. Sci. Dept., Report No. 1, September 1978.Google Scholar
  12. [12]
    Shepherdson, J. C., On the interpretation of Aristotle's syllogistic, J. Symb. Log. 21 (1956) 137–147.Google Scholar
  13. [13]
    Tarski, A., Ordinal Algebras, North-Holland, Amsterdam, 1956.Google Scholar
  14. [14]
    Ville, F., Décidabilité des formules existentielles en théorie des ensembles, C. R. Acad. Sc. Paris, t. 272, Série A (1971), 513–516.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • A. Ferro
    • 1
  • E. G. Omodeo
    • 1
  • J. T. Schwartz
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA

Personalised recommendations