Analysis of dependencies to improve the behaviour of logic programs

  • Maurice Bruynooghe
Friday Morning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 87)


Traditionally, backtracking uses a total order over the derivation steps. On failure, it returns to the most recent state. We consider states as a set of derivation steps. For each step, we save a ‘inputset’ validating the derivation. This results in a partial order over the derivation steps and allows a more accurate ‘intelligent’ backtracking.


Logic Program Goal Statement Total Order Unification Algorithm Horn Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. [1]
    Bruynooghe, M. Intelligent backtracking for an interpreter of Horn Clause logic programs. Report CW 16, Afdeling Toegepaste Wiskunde en Programmatie, K.U.Leuven, Belgium, september 1978.Google Scholar
  2. [2]
    Bruynooghe, M. Naar een betere beheersing van de uitvoering van programma's in de logika der Horn-uitdrukkingen. (In Dutch). Doctoral dissertation, Afdeling Toegepaste Wiskunde en Programmatie, K.U.Leuven, Belgium, may 1979.Google Scholar
  3. [3]
    Colmerauer, A., Kanoui, H., Roussel, P. and Pasero, R. Un systeme de communication homme-machine en francais. Groupe d'Intelligence Artificielle, U.E.R. de Luminy, Université d' Aix-Marseille, 1973.Google Scholar
  4. [4]
    Doyle, J. A truth maintenance system. Artificial Intelligence 12 (1979), 231–272.CrossRefGoogle Scholar
  5. [5]
    Kowalski, R.A. Predicate logic as a programming language. Information Processing 74, North-Holland Pub. Co., Amsterdam, 1974, pp. 569–574.Google Scholar
  6. [6]
    Kowalski, R.A. Algorithm = logic + control. Comm. ACM 22, 7 (july 1979), 424–436.Google Scholar
  7. [7]
    Robinson, J.A. Logic: form and function. Edinburgh University Press 1979.Google Scholar
  8. [8]
    Sussman, G.J. and McDermott, D.V. Why conniving is better than planning. AI Memo 255A, MIT, april 1972.Google Scholar
  9. [9]
    Warren, D., Pereira, L.M. and Pereira, F. PROLOG-The language and its implementation compared with LISP. Proc. symp. on Art. Intell. and Programming Languages; SIGPLAN Notices (ACM) 12, 8; SIGART Newsletters (ACM) 64 (august 1977), pp. 109–115.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Maurice Bruynooghe
    • 1
  1. 1.Afdeling Toegepaste Wiskunde en ProgrammatieKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations