Adding dynamic paramodulation to rewrite algorithms

  • Paul Y Gloess
  • Jean-Pierre H Laurent
Thursday Morning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 87)


A practical and effective solution to a problem resulting from the existence of critical pairs in a set of rewrite rules is presented.

We show how to modify rewrite algorithms by introducing a dynamic paramodulation of rules. This can be done in different ways. The related issues are discussed.

A concrete example is given in the case of the "depth first" rewrite algorithm.

Key words and phrases

critical pairs Knuth-Bendix algorithm paramodulation rewrite algorithms rewrite rules theorem-proving 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Boyer and J S. Moore. A Computational Logic. Academic Press Inc., New York, 1979.Google Scholar
  2. 2.
    Robert S. Boyer, J Strother Moore. A Theorem Prover for Recursive Functions: a User's Manual. CSL-91, NR 049–378, SRI International, Menlo-Park, California 94025, June, 1979.Google Scholar
  3. 3.
    P. Y Gloess. A Proof of the Correctness of a Simple Parser of Expressions by the Boyer-Moore System. Technical Report N00014-75-C-0816-SRI-7, SRI International, Menlo Park, California 94025, August, 1978.Google Scholar
  4. 4.
    P. Y Gloess, J-P Laurent. Adding Dynamic Paramodulation to Rewrite Algorithms. Technical Report CSL-102, SRI International, Menlo Park, CA94025, December, 1979.Google Scholar
  5. 5.
    G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. Rapport Laboria no250, IRIA-LABORIA, Domaine de Voluceau, 78150 Le Chesnay, France, August, 1977.Google Scholar
  6. 6.
    G. Huet. Equations and Rewrite Rules: a Survey. CSL-111, SRI International, Menlo Park, California 94025, January, 1980.Google Scholar
  7. 7.
    D. E. Knuth and P. G. Bendix. Simple Word Problems in Universal Algebras. In J. Leech, Ed., Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, pp. 263–297.Google Scholar
  8. 8.
    D. S. Lankford. Canonical Inference. Automatic Theorem Proving Project Report ATP-32, University of Texas, December, 1975.Google Scholar
  9. 9.
    D. R. Musser. Convergent Sets of Rewrite Rules for Abstract Data Types. USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, California 90291, December, 1978. Extended AbstractGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Paul Y Gloess
    • 1
  • Jean-Pierre H Laurent
    • 1
    • 2
  1. 1.SRI InternationalMenlo ParkU.S.A.
  2. 2.Universitè de CaenCaen CedexFrance

Personalised recommendations