Advertisement

An approach to theorem proving on the basis of a typed lambda-calculus

  • R. P. Nederpelt
Thursday Morning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 87)

Keywords

Normal Form Theorem Prove Language Theory Natural Deduction Mathematical Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N.G. de Bruijn, The mathematical language AUTOMATH, its usage and some of its extensions, Symposium on Automatic Demonstration, IRIA, Versailles, France, 1968. (Lecture notes in Mathematics, Vol. 125, pp. 29–61, Springer-Verlag, Berlin, 1970.)Google Scholar
  2. [2]
    N.G. de Brujin, AUTOMATH, a language for mathematics, Lecture Notes prepared by B. Fawcett, Les Presses de l'Université de Montréal, Canada, 1973.Google Scholar
  3. [3]
    D.T. van Daalen, A description of AUTOMATH and some aspects of its language theory, Proceedings of the Symposium APLASM, Vol. I, ed. P. Braffort, Orsay, France, 1973.Google Scholar
  4. [4]
    D.T. van Daalen, The language theory of Automath, doctoral dissertation, Technol. University Eindhoven, The Netherlands, 1980.Google Scholar
  5. [5]
    L.S. van Benhtem Jutting, Checking Landau's "Grundlagen" in the AUTOMATH system, doctoral dissertation, Technol. University Eindhoven, The Netherlands, 1977. (Mathematical Centre Tracts 83, Amsterdam, The Netherlands, 1979.)Google Scholar
  6. [6]
    R.P. Nederpelt, Strong normalization in a typed lambda calculus with lambda structured types, doctoral dissertation, Technol. University Eindhoven, The Netherlands, 1973.Google Scholar
  7. [7]
    R.P. Nederpelt, Presentation of natural deduction, Recueil des Travaux de l'Institut Mathématique, Nouvelle série, tome 2 (10), p. 115–126, Symposium: Set Theory, Foundations of Mathematics, Beograd, Jugo-Slavia, 1977.Google Scholar
  8. [8]
    J. Zucker, Formalization of classical mathematics in AUTOMATH, Actes of the International Logic Colloquium, Clermont-Ferrand, France, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • R. P. Nederpelt
    • 1
  1. 1.Department of TechnologyEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations