Advertisement

Semantics :Algebras,fixed points,axioms

  • Mila E. Majster-Cederbaum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 85)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lucas, P.: Formal Definition of Programming Languages and Systems. IFIP Congress, 71, August 1971.Google Scholar
  2. 2.
    Lucas, P., P. Lauer, H. Stigleither: Method and Notation for the Formal Definition of Programming Languages. Technical Report TR-250-87. IBM, Vienna Laboratories, 1970.Google Scholar
  3. 3.
    Lucas, P., K. Walk: On the Formal Definition of PL/I. Annual Review in Automatic Programming 6. Eds: M. Halpern and C. Shaw. Pergamon Press, 1971.Google Scholar
  4. 4.
    Wegner, P.: The Vienna Definition Language. Computing Surveys 4, 1. March 1972.Google Scholar
  5. 5.
    Knuth, D.: Semantics of Context-free Languages. Mathematical Systems Theory 2, 1968.Google Scholar
  6. 5.
    McCarthy, J.: A Formal Definition of a Subset of Algol. Formal Language Description Language for Computer Programming, Proceedings of IFIP Working Conference on Formal Language Description Language. North-Holland Publ., 1966.Google Scholar
  7. 7.
    Lauer, P.: Consistent and Complementary Formal Definitions of Programming Languages. Techn. Report TR 25-121. IBM, Vienna Laboratory, 1971.Google Scholar
  8. 8.
    Landin, P.: A Formal Description of Algol 60. Formal Language Description Language for Computer Programming. Proceedings of IFIP Working Conference on Formal Language Description Languages. North-Holland, 1966.Google Scholar
  9. 9.
    Landin, P.: A Lambda-Calculus Approach. Advances in Programming and Nonnumerical Computation. Ed.: L. Fox., Pergamon Press, 1966.Google Scholar
  10. 10.
    McCarthy, J.: Towards a Mathematical Theory of Computation. IFIP Congress 1962. North-Holland, 1962.Google Scholar
  11. 11.
    McCarthy, J.: A Basis for a Mathematical Theory of Computation. Computer Programming and Formal Systems. Eds.: P. Braffort and D. Hirschberg. North-Holland, 1963.Google Scholar
  12. 12.
    Strachey, C.: Towards Formal Semantics. Formal Language Description Language for Computer Programming. Proceedings of IFIP Working Conference on Formal Language Description Languages. North-Holland, 1966.Google Scholar
  13. 13.
    Scott, D.: Outline of a Mathematical Theory of Computation. Proceedings of the Fourth Annual Princeton Conference on Information Science and Systems, 1970.Google Scholar
  14. 14.
    Scott, D.: Continuous Lattices. Technical Monograph PR 6-7, Oxford University, August, 1971.Google Scholar
  15. 15.
    Scott, D.: Lattice Theory, Data Types and Formal Semantics. NYU Symposium on Formal Semantics. Prentice Hall, 1972.Google Scholar
  16. 16.
    Scott, D.: C. Strachey: Towards a Mathematical Semantics for Computer Languages. Computers and Automata. Ed.: J. Fox, John Wiley, 1972.Google Scholar
  17. 17.
    Scott, D.: The Lattice of Flow Diagrams. Semantics of Algorithmic Languages. Ed.: E. Engeler. Springer Notes in Mathematics, vol. 188.Google Scholar
  18. 18.
    Floyd, R.: Assigning Meaning to Programs. Proceedings of Symposia in Applied Mathematics, vol. 19, Mathematical Aspects of Computer Science, 1967.Google Scholar
  19. 19.
    Hoare, C.A.R.: An Axiomatic Approach to Computer Programming. CACM 12, 10, October, 1969.Google Scholar
  20. 20.
    Hoare, C.A.R., P.E. Lauer: Consistent and Complementary Formal Theories of The Semantics of Programming Languages. Acta Informatica, 3, 2, 1974.Google Scholar
  21. 21.
    Dijkstra, E.W.: A Simple Axiomatic Basis for Programming Language Constructs. EWD 72. Technological University, Eindhoven, 1973.Google Scholar
  22. 22.
    Goguen, J.A.: Semantics of Computation. Proceedings of the First International Symposium on Category Theory Applied to Computation and Control. Lecture Notes in Computer Science 25. Springer, 1975.Google Scholar
  23. 23.
    Burstall, R.M.: Proving Properties of Programs by Structural Induction. Computer Journal 12, 1969.Google Scholar
  24. 24.
    Burstall, R.M., P.J. Laudin: Programs and their Proofs: an Algebraic Approach. Machine Intelligence, 4. Edinburgh Press, 1969.Google Scholar
  25. 25.
    Goguen, J.A., J.W. Thatcher, E.E. Wagner, J.B. Wright: Initial Algebra Semantics and Continuous Algebras. JACM 24, 1 1977.Google Scholar
  26. 26.
    Burstall, R.M.: An algebraic description of Programs with Assertions, Verification and Simulation. Proc. ACM Conference and Proving Assertions about Programs. Las Cruces, New Mexico, 1972.Google Scholar
  27. 27.
    Reynolds, J.C.: Formal Semantics. Preliminary Draft for COSIRS, 1976.Google Scholar
  28. 28.
    Chirica, L. D.F. Martin: An Algebraic Formulation of Knuthian Semantics. Proc. 17th Annual IEEE Symposium on Formulations of Computer Science, Houston, Texas, 1978.Google Scholar
  29. 29.
    Cook, S.A.: Soundness and Completeness of an Axiom System for Program Verification. SIAM J. on Computing vol. 7, no. 1, 1978.Google Scholar
  30. 30.
    Donahue, J.E.: Complementary Definitions of Programming Language Semantics. Springer Lecture Notes in Computer Science, 42, 1976.Google Scholar
  31. 31.
    Majster, M.E.: Data Types, Abstract Data Types and their Specification Problem. Theoretical Computer Science, 8, 1979.Google Scholar
  32. 32.
    Goguen, J.A., J.W. Thatcher, E.G. Wagner: An Initial Approach to the Specification Correctness and Implementation of Abstract Data Types. Corrent Trends in Programming Methodology, vol. 4, Data Structuring. Ed.: R. Yeh. Prentice Hall, 1978.Google Scholar
  33. 33.
    Majster, M.E.: A unified view of semantics, Technical Report TR79-394, Cornell University (1979). Also submitted for publication.Google Scholar
  34. 34.
    Clarke, E.M.: Program invariants as fixed points, Computing 19, 1, 1978.Google Scholar
  35. 35.
    de Bakker, J.W.: Fixed point semantics and Dijkstra's fundamental invariance theorem, Mathematical Centre, January 1975.Google Scholar
  36. 36.
    de Bakker, J.W., Meerteus, L.G.L.: On the completeness of the induction assertion method, Mathematical Centre, December 1975.Google Scholar
  37. 37.
    Majster, M.E.: General properties of semantics. Technical Report in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Mila E. Majster-Cederbaum
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2

Personalised recommendations