Semantic analysis of communicating sequential processes

Shortened version
  • Patrick Cousot
  • Radhia Cousot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 85)


Auxiliary Variable Complete Lattice Operational Semantic Symbolic Execution Communicate Sequential Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Apt K., Francez N. & de Roever W.P.[1979a], Semantics for concurrently communicating finite sequential processes, based on predicate transformers, Progress Report, Vakgroep inf., Rijksuniversiteit Utrecht, The Netherlands, (June 1979).Google Scholar
  2. Apt K., Francez N. & de Roever W.P.[1979b], A proof system for communicating sequential processes, Tech. Rep. RUU-CS-79-8, Vakgroep Inf., Rijkuniv. Utrecht, NL., (Aug. 79).Google Scholar
  3. Chandy K.M. & Misra J.[1979], An axiomatic proof technique for networks of communicating processes, TR 98, Univ. of Texas at Austin, (May 79).Google Scholar
  4. Clarke E.M.Jr[1978], Proving correctness of coroutines without history variables, TR-CS-1978-4, Dept. of Comp. Sci., Duke Univ., USA, (1978).Google Scholar
  5. Clarke E.M.Jr[1979], Synthesis of resource invariants for concurrent programs, 6th ACM-POPL, (Jan. 1979), 211–221.Google Scholar
  6. Clint M.[1973], Program proving: coroutines, Acta Informatica 2(1973), 50–63.Google Scholar
  7. Cousot P.[1977], Asynchronous iterative methods for solving a fixed point system of monotone equations in a complete lattice, Rap. de Recherche no88, Laboratoire IMAG, Univ. Grenoble, (Sept. 1977).Google Scholar
  8. Cousot P.[1979], Analysis of the behavior of dynamic discrete systems, Rapport de Recherche no161, Laboratoire IMAG, Univ. Grenoble, (Jan. 1979).Google Scholar
  9. Cousot P. & Cousot R.[1977a], Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, 4th ACM-POPL, (Jan. 1977), 238–252.Google Scholar
  10. Cousot P. & Cousot R.[1977b], Automatic synthesis of optimal invariant assertions: mathematical foundations, ACM-Symp. on Artificial Int. & Prog. Languages, SIGPLAN Notices 12, 8(Aug. 1977), 1–12.Google Scholar
  11. Cousot P. & Cousot R.[1979a], Systematic design of program analysis frameworks, 6th ACM-POPL, (Jan. 1979), 269–282.Google Scholar
  12. Cousot P. & Cousot R.[1979b], Constructive versions of Tarski's fixed point theorems, Pacific J. Math. 82(1979), 43–57.Google Scholar
  13. Cousot P. & Halbwachs N.[1978], Automatic discovery of linear restraints among variables of a program, 5th ACM-POPL, (Jan. 1978), 84–97.Google Scholar
  14. Francez N., Hoare C.A.R., Lehmann D.J. & de Roever W.P.[1978], Semantics of nondeterminism, concurrency and communication, Lect. Notes Comp. Sci. 64, Springer Verlag, Extended abstract, (Sept. 1978), 191–200.Google Scholar
  15. Gries D.[1979], Yet another exercise: using two shared variables in two processes to provide starvation-free mutual exclusion, TR 79-372, Dept. Comp. Sci., Cornell Univ., N.Y., (1979).Google Scholar
  16. Hoare C.A.R.[1978], Communicating sequential processes, Comm. ACM 21, 8(1978), 666–677.Google Scholar
  17. Owicki S. & Gries D.[1976], An axiomatic proof technique for parallel programs I, Acta Informatica 6(1976), 319–340.Google Scholar
  18. Reif J.H.[1979], Data flow analysis of communicating processes, 6th ACM-POPL, (Jan. 1979), 257–268.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Patrick Cousot
    • 1
  • Radhia Cousot
    • 2
  1. 1.Faculté des SciencesUniversité de MetzMetzFrance
  2. 2.CRIN Nancy — Laboratoire Associé au CNRS No262Italy

Personalised recommendations