A shifting algorithm for min-max tree partitioning

  • Ronald I. Becker
  • Yehoshua Perl
  • Stephen R. Schach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 85)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BECKER, R.I., PERL, Y. and SCHACH, S.R. A shifting algorithm for min-max tree partitioning, Technical Report, Computer Science Department, University of Cape Town, Rondebosch, South Africa.Google Scholar
  2. [2]
    COOK, S.A. The complexity of theorem proving procedures. Proc. Third ACM Symp. on Theory of Computing, 1971, pp. 151–159.Google Scholar
  3. [3]
    GAREY, M.R. and JOHNSON, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Co., San Francisco, 1979.Google Scholar
  4. [4]
    HADLOCK, F. Minimum spanning forests of bounded trees. Proc. Fifth S.E. Conf. on Combinatorics, Graph Theory, and Computing, 1974, pp.449–460.Google Scholar
  5. [5]
    HOSKEN, W.H. Optimum partitions of tree addressing structures, SIAM J. Computing, 4, 3(1975), pp. 341–347.Google Scholar
  6. [6]
    KARP, R.M. Reducibility among combinatorial problems. In Complexity of Computer, Computations, R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85–104.Google Scholar
  7. [7]
    KUNDU, S. and MISRA, J. A linear tree partitioning algorithm. SIAM J. Computing, 6,1(1977), pp.151–154.Google Scholar
  8. [8]
    PERL, Y. and SCHACH, S.R. Max-min tree partitioning. To appear in JACM.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Ronald I. Becker
    • 1
  • Yehoshua Perl
    • 2
  • Stephen R. Schach
    • 3
  1. 1.University of Cape TownSouth Africa
  2. 2.Bar-Ilan UniversityIsrael
  3. 3.University of Cape TownSouth Africa

Personalised recommendations