Languages with reducing reflexive types

  • Egidio Astesiano
  • Gerardo Costa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 85)


We consider a class of languages of typed λ-expressions with first-order primitives and reflexive types and investigate which types it is useful and consistent to allow, when the meaning of a term is defined by its behaviour as a part of programs. We define the class of reducing types and show that it is irrelevant to allow the non-reducing ones in our languages. Moreover we prove that, for any language with reducing types and a sufficiently rich set of primitives there is a fully abstract model, in the sense of Milner.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AC1.
    E.Astesiano, G.Costa, On algebraic semantics of polyadic recursive schemas, 2me Coll. Les Arbres en Algèbre et en Programmation, Univ.of Lille, 1977, 29–83.Google Scholar
  2. AC2.
    === Fully abstract semantics for nondeterministic λ-s-calculi, 1979, to appear.Google Scholar
  3. ADJ.
    J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright, Initial algebra semantics and continuous algebras, JACM, 24 (1977) 68–95.Google Scholar
  4. B1.
    G. Berry, Séquentialité de l'évaluation formelle des λ-expressions, in B.Robinet ed. Trasformations des programmes (3me Coll. Int. sur la Programmation, Paris, 1978) Dunod, Paris 1978.Google Scholar
  5. B2.
    === Stable models of typed λ-calculi, 5th ICALP, Udine 1978, Lecture Notes in C.S. 62, Springer, 72–89.Google Scholar
  6. B3.
    G.Berry, Modèles complètement adéquats et stables des λ-calculs typés, Thèse d'Etat, Univ. Paris VII, 1977.Google Scholar
  7. Bh.
    C. Böhm, the CUCH as a formal and description language, in T.B. Steel ed. Formal language description languages for computer programming, North Holland, Amsterdam 1966, 179–197.Google Scholar
  8. CDS.
    M.Coppo, M.Dezani-Ciancaglini, P.Sallé, Functional characterization of some semantic equalities inside λ-calculus, 6th ICALP, Graz 1979, Lecture Notes in C.S. 71, Springer.Google Scholar
  9. CKV.
    B.Courcelle, G.Kahn, J.Vuillemin, Algorithmes d'équivalence et de réduction à des expressions minimales dans une classe d'équations récursives simples, Rapport IRIA n. 37, 1973.Google Scholar
  10. E.
    E.Egli, Typed meanings in Scott's λ-calculus models, Symp. on λ-calculus and computer science theory, Rome 1975, Lecture Notes in C.S. 37, Springer.Google Scholar
  11. F.
    E.Fehr, Lamda-calculus as control structures of programming languages, Report n.57, RWTH-Aachen, 1980.Google Scholar
  12. Ld.
    H.F. Ledgard, Ten mini-languages: a study of topical issues in programming languages, Comp. Surv. 3 (1971) 115–146.Google Scholar
  13. Lh.
    D.J.Lehmann, Modes in Algol Y, in Implementation and design of algoritmic languages, J.André, J.P.Banâtre eds. IRIA, 1977, 111–123.Google Scholar
  14. Lv.
    J.J.Lévy, Reductions correctes et optimales dans le λ-calcul, Thèse d'Etat, Univ. Paris VII, 1978.Google Scholar
  15. MMN.
    R.Milner, L.Morris, M.Newey, A logic for computable functions with reflexive and polymorphic types, in Proving and improving programs, G.Huet, G.Kahn eds. (Coll. IRIA, Arc et Senans, 1975), IRIA, 1975.Google Scholar
  16. M1.
    R. Milner, Processes, a mathematical model for computing agents, Studies in Logic 80, North Holland, 1975, 157–174.Google Scholar
  17. M2.
    ===Fully abstract models of typed λ-calculi, TCS 4 (1977) 1–22.Google Scholar
  18. P.
    G. Plotkin, LCF as a programming language, TCS 5 (1977) 223–255.Google Scholar
  19. R.
    J.C.Reynolds, Notes on a lattice theoretic approach to the theory of computation, Syracuse University, 1972.Google Scholar
  20. S.
    D.Scott, Data types as lattices, SIAM J. Comput. 5 (1976) n.3.Google Scholar
  21. W.
    C.P. Wadsworth, The relation between computational and denotational properties of Scott's D model of the λ-calculus, SIAM J. Comput. 5 (1976) 488–521.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Egidio Astesiano
    • 1
  • Gerardo Costa
    • 1
  1. 1.Istituto di Matematica dell'Università di GenovaGenovaItaly

Personalised recommendations