Advertisement

How to get rid of pseudoterminals

  • W. Ainhirn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 85)

Abstract

We investigate the role of pseudoterminals for EOL forms. This leads us to the definition of m — interpretation which avoids pseudoterminals. We solve the problem of m — completeness of short and simple EPOL forms and finally consider the validity of some basic results on EOL forms under m — interpretation.

Keywords

Closure Property Derivation Tree Terminal Symbol Formal Language Theory Nonterminal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ai]
    W. Ainhirn, How to get rid of pseudoterminals, Report No. 34, Institut für Informationsverarbeitung TU Graz (1979).Google Scholar
  2. [AiM]
    W. Ainhirn, H. A. Maurer, On ɛ productions for terminals in EOL forms, Discrete Applied Mathematics 1 (1979), 155–166.Google Scholar
  3. [CM]
    K. Culik II, H. A. Maurer, Propagating chain — free normal forms for EOL systems, Information and Control 36 (1978), 309–319.Google Scholar
  4. [CMO]
    K. Culik II, H. A. Maurer, Th. Ottmann, Two — symbol complete EOL forms, Theoretical Computer Science 6 (1978), 69–92.Google Scholar
  5. [ER]
    A. Ehrenfeucht, G. Rozenberg, The equality of EOL languages and codings of OL languages, International Journal of Computer Mathematics 4, Section A (1974), 95–104.Google Scholar
  6. [H]
    M. A. Harrison, Introduction to formal language theory, Addison-Wesley, Reading (1978).Google Scholar
  7. [He]
    G. T. Herman, Closure properties of some families of languages associated with biological systems, Information and Control 24 (1974), 101–121.Google Scholar
  8. [HR]
    G. T. Herman, G. Rozenberg, Developmental systems and languages, North Holland Publishing Company, Amsterdam (1975).Google Scholar
  9. [L]
    A. Lindenmayer, Mathematical modells for cellular interactions in development, Journal of Theoretical Biology 18 (1968), 280–315.Google Scholar
  10. [MSW1]
    H. A. Maurer, A. Salomaa, D. Wood, EOL forms, Acta Informatica 8 (1977), 75–96.Google Scholar
  11. [MSW2]
    H. A. Maurer, A. Salomaa, D. Wood, On generators and generative capacity of EOL forms, Acta Informatica 13 (1980), 87–107.Google Scholar
  12. [MSW3]
    H. A. Maurer, A. Salomaa, D. Wood, Pure grammars, Mc Master University TR No. 79 — CS — 7 (1979).Google Scholar
  13. [RS]
    G. Rozenberg, A. Salomaa, The mathematical theory of L systems, Academic Press, New York, to appear.Google Scholar
  14. [W]
    D. Wood, Grammar and L forms, Springer Verlag, New York, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • W. Ainhirn
    • 1
  1. 1.Institut für InformationsverarbeitungTechnische Universität GrazGrazAustria

Personalised recommendations