Advertisement

Reductions of nets and parallel programs

  • G. Berthelot
  • G. Roucairol
  • R. Valk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 84)

Abstract

Reductions of concurrent systems reduce the degree of parallelism by introducing indivisible sequences of operations, which reduces the complexity of the system. If fundamental properties are preserved, this method simplifies analysis and verification. Reductions are given for transition systems, place/transition nets and parallel programs.

Keywords

Transition System Parallel Program Reachable State Reduction Rule Concurrent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berthelot, G., Roucairol, G.: Reduction of Petri Nets. in: Proc. of the Symp. on MFCS 76, Lect. Notes in Computer Sci. 45, pp 202–209, Springer Berlin, (1976).Google Scholar
  2. 2.
    Berthelot, G.: Verification de réseaux de Petri. Thèse de 3° cycle, Institut de Programmation, Univ. Paris 6, (1978).Google Scholar
  3. 3.
    Berthelot, G.: Preuves de non-blocage de programmes paralléles par reduction de réseaux de Petri. in: Proc. of the 1st European Conference on Parallel and Distributed Processing, J.C.Syre ed., CEPADUES publ., (1979)Google Scholar
  4. 4.
    Byrn, W.H.: Sequential Processes, Deadlocks, and Semaphore Primitives. TR7-75, Havard Univ., Cambridge, Mass., (1975).Google Scholar
  5. 5.
    Cotronis, J.Y., Lauer, P.E.: Verification of Concurrent Systems of Processes. in: Proc. of the International Computing Symposium 1977, Liège; (1977).Google Scholar
  6. 6.
    Dadda, L.: The Synthesis of Petri Nets for Controlling Purposes and the Reduction of their Complexity. in: Proc. of the EUROMICRO Conf. North-Holland pub., (1976).Google Scholar
  7. 7.
    Gostelow, K., Gerf, V.G., Estrin, G., Volansky, S.,: Proper Termination of Flow of Control in Programs involving Concurrent Processes. SIGPLAN Notices 7,11,72 (1972).Google Scholar
  8. 8.
    Jantzen,M., Valk,R.: Formal Properties of Place Transition Nets. in: these Proceedings.Google Scholar
  9. 9.
    Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. in: Parallel Processing, Lecture Notes in Computer Sci., 24, pp 102–112, Springer, Berlin, (1975).Google Scholar
  10. 10.
    Kowalk, W., Valk, R.: On Reductions of Parallel Programs. in: Automata, Languages and Programming, Lecture Notes in Computer Sci. 71, pp 356–369, Springer, Berlin, (1979).Google Scholar
  11. 11.
    Kwong, Y.S.: On Reduction of Asynchronous Systems., Theor. Computer Sci. 5, pp 25–50, (1977).CrossRefGoogle Scholar
  12. 12.
    Lipton, R.J.: Reduction: A Method of Proving Properties of Parallel Programs, Comm. ACM 18, pp 717–721, (1975).CrossRefGoogle Scholar
  13. 13.
    Memmi, G., Roucairol, G.: Linear Algebra in Net Theory. in: these Proceedings.Google Scholar
  14. 14.
    Owicki, S., Gries, P.: An Axiomatic Proof Technique for Parallel Programs I. Acta Informatica 6, pp319–340, (1976).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • G. Berthelot
    • 1
  • G. Roucairol
    • 1
  • R. Valk
    • 2
  1. 1.LITP, Institut de ProgrammationUniversité Paris VIFrance
  2. 2.Fachbereich InformatikUniversität HamburgGermany

Personalised recommendations