Linear algebra in net theory

  • G. Memmi
  • G. Roucairol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 84)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BES75]
    E. Best, H. Schmid. Systems of open paths in Petrinets. Proc. of the Symp. ou M.F.C.S. 75. Lect. Notes in Comp. Sc. no 32. Springer Verlag ed. 1975.Google Scholar
  2. [CO72]
    F. Commoner. Deadlocks in Petri nets. CA-7206-2311, Applied Data Research, Wakefield, Mass., June 1972.Google Scholar
  3. [HU69]
    T.C. HU. Integer Programming and networks flows. Addison Wesley reading. Mass. 1969.Google Scholar
  4. [GLT80]
    H.G. Genrich, K. Lautenbach, P.S. Thiagarajan. An overview of net theory. In this volume.Google Scholar
  5. [HA72]
    M. Hack. Analysis of production schemata by Petri nets. M.S. Thesis, MAC TR 94, MIT Cambridge Mass. sept. 1972.Google Scholar
  6. [JAV80]
    M. Jantzen, R. Valk. Formal properties of place-transition nets. In this volume.Google Scholar
  7. [LA73]
    K. Lautenbach. Exakte Bedingungen der Lebendigkeit für eine Klasse von Petri-Netzen. St. Augustin, GMD Bonn, Bericht nr. 82 (1973).Google Scholar
  8. [LAS74]
    K. Lautenbach, H.A. Schmid. Use of nets for proving correctness of concurrent systems. Proc. IFIP Congress 74. North-Holland Publ. Comp. (1974).Google Scholar
  9. [LI76]
    Y.E. Lien. Termination properties of generalized Petri-nets. S.I.A.M. j. Comp., June 1976, Vol. 5, no2, pages 251–265.Google Scholar
  10. [LI76a]
    A note on transition systems. J. inf. Sciences 1976, vol.10, no4, p. 347–362.CrossRefGoogle Scholar
  11. [ME77]
    G. Memmi. Semiflows and invariants. Applications in Petri nets theory. Journées d'étude sur les réseaux de Petri. A.F.C.E.T. Institut de Programmation. Paris mars 1977.Google Scholar
  12. [ME78]
    G. Memmi. —Application of the semiflow to the boundedness and liveness problems in the Petri-nets theory. Proc. of the Conf. on Information Sciences and Systems. Johns Hopkins University. Baltimore Maryland. march 1978.Google Scholar
  13. [ME78a]
    -Fuites et semi-flots dans les Réseaux de Petri. Thèse de Docteur-Ingénieur. Institut de Programmation. Université Paris 6. Dec. 1978.Google Scholar
  14. [ME79]
    G. Memmi. Notion de dualité et de symétrie dans les réseaux de Petri. Proc. of the Symp. on Semantics of concurrent computations. Evian July 1979. Lect. Notes in Comp. Sciences no70. Springer-Verlag ed.Google Scholar
  15. [MU77]
    T. Murata. State equations, controllability, maximal matchings of Petri nets. IEEE Trans. Autom. and Control. Vol. AC-22 no3, June 1977, pp. 412–416.CrossRefGoogle Scholar
  16. [RA74]
    G. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri-nets. Ph. D thesis. MAC-TR-120. Cambridge Mass. Feb. 1974.Google Scholar
  17. [SI78]
    J. Sifakis. Structural properties of Petri-nets. Proc. of M.F.C.S. 78 Lect. Notes in Comp. Sciences. Springer Verlag ed. 1978.Google Scholar
  18. [SI80]
    J. Sifakis. Use of Petri-nets for performance evaluation. In this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • G. Memmi
    • 1
  • G. Roucairol
    • 2
  1. 1.ECA-AutomationParis
  2. 2.LITP, Institut de ProgrammationUniversité Paris VIFrance

Personalised recommendations